Расчеты количества энергии, необходимой для такого перелета, приводят к самым невероятным результатам. Если пользоваться химической энергией, которой обладают обычные топлива, то ее понадобится почти столько, сколько содержится во всех разведанных до сих пор горючих ископаемых нашей Земли!
Такое количество энергии нужно при самых скромных размерах корабля, несоизмеримо малых по сравнению с объемом топлива, которое он должен нести с собой.
Казалось бы, эти расчеты и цифры могут остудить пыл самых ярых «межзвездных скитальцев».
Но нет! Идея межзвездного полета, какой бы сверхдерзкой она ни представлялась, в конечном счете не противоречит известным нам законам природы. Ведь реактивный способ движения принципиально позволяет разогнать звездолет до скоростей, приближающихся к скорости света.
А что касается энергии, необходимой для полета, то, уж конечно, в качестве ее источника никто (в том числе и сам Циолковский, который прекрасно представлял себе все эти трудности) не собирается использовать обычное топливо.
В великую кладовую Природы, туда, где хранятся гигантские запасы энергии, «упакованной» невероятно экономно, обращены взоры ученых, инженеров, изобретателей. А точные расчеты показывают, что если решить задачу полного превращения массы в энергию, то принципиально можно построить такой звездолет, который сумеет совершить полет, не «съев» полностью самого себя. А кроме того, может быть, удастся организовать «заправку» звездолета на промежуточных станциях? А может быть, достаточно взять с собой энергии только на дорогу «туда»? На обратный же путь удастся запастись энергией «там»?
И во всем мире кипит работа. Разрабатываются проекты электротепловых двигателей, в которых реактивный поток частиц разгоняется не только за счет обычного теплового процесса, но и за счет действия на этот поток электрических сил. А вещество, состоящее из этих частиц, нагрето до температуры в десятки тысяч градусов и находится уже не в обычном для тепловых двигателей газообразном состоянии, а в состоянии плазмы — смеси ионов, представляющих собой обломки молекул, атомов и свободных электронов. И думают о том, как бы нагреть поток этих частиц до температур в сотни тысяч градусов и еще больше. Тогда плазменный двигатель превратится в фотонный или квантовый двигатель; энергия, введенная в поток частиц, будет превращаться в световое излучение, а звездолет будет получать ускорение за счет реактивного действия излучаемого им светового пучка.
Разработка звездолетных двигателей — одно из направлений космонавтики, науки, основы которой заложены Циолковским. Космонавтика, если можно так выразиться, — поэзия современной техники. Пока еще в ней фантастики немногим меньше, чем науки. Люди пока еще только догадываются о тех трудностях, с которыми им придется встретиться в завоевании космических пространств. Но ведь так дело обстоит всегда, когда человек берется за новую и грандиозную по своим масштабам задачу.
И может быть, к лучшему, что, еще не зная точно, как нужно решать эту задачу, он в то же время не представляет себе, какие трудности ему придется преодолеть.
Веря в свои силы, он храбро берется за дело, а успешно закончив его, оглянувшись и оценив всю сложность сделанного, удовлетворенно восклицает: «Знал бы — не брался!..», а затем берется за еще более сложную задачу.
Борьба за энергию, как всегда, в самом разгаре. Идет непрерывный процесс создания и совершенствования машин-двигателей — самых различных по назначению, конструкции и принципу действия. Но теперь мы уже знаем, что все они — от первой паровой машины и до еще не существующих плазменного и квантового двигателей — служат одной и той же цели: преобразуют различные виды энергии в механическую.
Человек автоматизировал процессы преобразования энергии и тем самым удесятерил свои силы.
Как ни жаль расставаться с космосом, все же придется от межзвездного корабля вернуться к лягушечьей лапке. А чтобы немного оживить беседу, займемся теперь уже лапкой не мертвой лягушки, а живой. Причем нас будет интересовать даже не вся лапка в целом, а одни только мышцы, покрывающие кости этой лапки, так же как они покрывают скелет любого позвоночного животного — от золотой рыбки в аквариуме до человека.
Прыгает ли лягушка в пруд, спасаясь от преследования, исполняет ли балерина сложнейшее па, пишет ли ученый новый труд с интригующим названием «Машина умнее человека», все время работают мышцы — работают десятки, сотни живых двигателей, непрерывно превращая энергию топлива — пищи — в механическую энергию, нужную, чтобы двигаться, работать, говорить, писать.
Вспомните, как действуют паровая машина, паровая турбина, двигатель внутреннего сгорания, газовая турбина, реактивный двигатель, ракета. Во всех случаях химическая энергия топлива сначала преобразовывается и тепловую и только после этого в механическую.
В мышце преобразование энергии происходит при постоянной температуре, химическая энергия непосредственно преобразуется в механическую энергию. Каждому понятно, что чем короче цепочка преобразований, тем меньше энергии расходуется впустую, тем экономнее оказывается двигатель, осуществляющий преобразование энергии. И действительно, в мышцах тренированного спортсмена преобразуется в полезную работу до 45 процентов химической энергии, заключенной в пище, — другими словами, коэффициент полезного действия (или как его сокращенно называют, кпд) живого двигателя достигает 45 процентов, в то время как кпд лучшего теплового двигателя — современной паровой турбины — не превышает 40 процентов.
Живые двигатели устроены не так, как искусственные двигатели, и действуют совсем по-другому.
«Мясо» животного и есть мышцы, которые составляют примерно половину веса его тела. Выловив из супа кусок мяса, можно увидеть, что оно состоит из множества прилегающих одно к другому волокон толщиной в 10–100 микрон, называемых мышечными волокнами. Они построены из особых мышечных белков. Когда попытались под микроскопом рассмотреть мышечное волокно, то оказалось, что оно, в свою очередь, состоит из тончайших ниточек, толщиной в микрон.
Представляете ли вы, читатель, что такое микрон? Толщина человеческого волоса составляет от 30 до 60 микрон. Нить искусственного волокна тоньше, но и она порядка 20–40 микрон. Шелкопряд прядет нить толщиной 12–15 микрон. Размеры микроскопических организмов — бактерий — составляют в среднем от 1 до 5 микрон.
Совсем недавно, всего лишь шесть-семь лет назад, американским ученым Генри Хаксли и Джен Халсон с помощью электронного микроскопа удалось заглянуть в глубь живых ниточек, образующих мышечное волокно. И их глазам предстало поразительное зрелище. Оказалось, что микронной толщины ниточки состоят из отдельных волоконцев. Одни из них покороче, но потолще: толщина порядка 0,02 микрона, а длина 1,5 микрона. Другие подлиннее (2 микрона), но потоньше (0,01 микрона).
В строгом, удивительно строгом порядке располагаются эти элементарные звенья механизма живой машины. Все тонкие волоконца соединены посередине плотным материалом, образующим перепоночку; свободными концами они входят в промежутки между более толстыми волоконцами так, что в поперечном сечении получается картина, несколько напоминающая пчелиные соты. Каждое тонкое волоконце оказывается расположенным между двумя-тремя толстыми волоконцами. А вдоль по длине толстых располагаются рычажки-мостики, которыми они могут сцепляться с тонкими волоконцами.
Долго изучали исследователи это чудо «конструкторского» искусства, а затем постепенно стали воссоздавать картину действия элементарного живого двигателя. Как только он включается, рычажки-мостики начинают колебаться в продольном направлении, то сцепляясь, то расцепляясь с тонкими волоконцами. В процессе каждого колебания они втягивают тонкие волоконца на шаг, затем еще на шаг, еще и еще; живая ниточка при этом становится все короче и короче. Рычажки могут колебаться с очень большой скоростью — сотни раз в секунду. Это примерно та скорость, с какой может происходить в ничтожно малых — молекулярных — объемах процесс, связанный с переходом химической энергии в механическую, в энергию качания рычажков. В результате работы элементарных двигателей мышечные волокна то сокращаются, то увеличиваются в длину.