Изменить стиль страницы

Разумный глаз img_85.jpg

Рис. 75. Звездные расстояния астрономы измеряют по параллактическому смещению звезды относительно 'фона' - очень удаленных звездных образований, которые можно считать неподвижными

Разовьем дальше тезис о логическом сходстве зрения с непрямыми методами измерения в физике. И здесь и там необходимы допущения. И здесь и там велика зависимость от прямых измерений. И здесь и там необходимы константы - эталоны для построения шкал, выведенные на основе анализа прошлых успехов и неудач измерения реального мира. Возьмем какой-нибудь пример научного измерения и детально разберем его. Посмотрим, например, как измеряются звездные расстояния.

Для измерений звездных расстояний астрономы применяют оба метода измерения - прямой и непрямой. Но применимость прямого измерения ограничена немногими ближайшими к нам звездами. В отношении более далеких звезд необходимо делать некоторые допущения, причем всегда приходится считаться с тем, что эти допущения могут оказаться ошибочными.

Метод прямого измерения расстояний до звезд эквивалентен стереоскопическому зрению. Это геометрический способ, его результаты, как и результаты стереоскопического восприятия, в основном однозначны; тем не менее это довольно тонкий способ, и даже незначительные погрешности приборов могут сильно сказаться на результатах. Метод состоит в измерении кажущегося смещения ближних звезд относительно дальних при смене точки наблюдения (тригонометрический параллакс). При стереоскопическом зрении различие точек наблюдения задано постоянным расстоянием (базисом) между глазами - оно равно приблизительно 60 миллиметрам. Но для астрономов даже поперечник Земли - недостаточный базис при измерении звездных расстояний. Замеры они проводят не одновременно, а с интервалом в шесть месяцев; в качестве базиса используется поперечник земной орбиты (около 300 миллионов километров). Этим способом было впервые измерено расстояние до звезды; немецкий астроном Бессель в 1838 году измерил удаленность звезды 61 Лебедя[8]. Его результат составил 0,35" (в угловых секундах). Уточненный позднее результат равен 0,30". Такой параллакс соответствует расстоянию около десяти световых лет. Наибольший известный параллакс - меньше 1"; такой параллакс, к примеру, может быть получен, если наблюдать предмет 25 миллиметров в поперечнике с расстояния около пяти километров; Прямой метод измерения параллакса позволяет измерять расстояния в пределах около 300 световых лет (хотя Туманность Андромеды, до которой около двух миллионов световых лет, можно увидеть и невооруженным глазом).

Измерение расстояний в световых годах связано с измерением параллакса лишь косвенно. Правда, есть и такая единица, которая связана с параллаксом непосредственно, - "парсек". Один парсек - это расстояние, соответствующее годичному параллаксу 1"[9]; оно равно произведению радиуса земной орбиты на число 206 265; радиус земной орбиты (среднее расстояние до Солнца, равное 150 миллионам километров) является астрономической единицей расстояния.

Сам термин "парсек" произведен от слов "параллакс, равный одной секунде"; итак, 1 парсек равен 206 265 астрономическим единицам, или 3,258 светового года. До ближайшей к нам звезды 1,31 парсека, или 4,2 светового года.

Разумный глаз img_86.jpg

Рис. 76. Глаза сигнализируют о расстоянии до близких объектов способом, весьма похожим на тот, который применяют астрономы для измерения удаленности звезд. Сигнализируется параллакс

Для сравнения укажем, что стереоскопическое зрение действует на расстояниях до нескольких сотен метров. Столь малый радиус действия объясняется двумя причинами: первая состоит в том, что разрешающая способность глаза примерно в сто раз ниже, чем соответствующая характеристика для телескопа; вторая (и более важная) - расстояние между глазами (базис стереозрения) - является ничтожной величиной по сравнению с диаметром орбиты Земли.

Наибольшие звездные расстояния, при которых еще возможны определения тригонометрических параллаксов, близки к 100 парсекам. При еще больших удаленностях применяется способ, известный под названием "определение средних параллаксов"; в его основе лежит тот (эмпирически установленный) факт, что Солнце (и Земля вместе с ним) перемещается в пространстве относительно большого числа звезд по направлению к Веге в созвездии Лиры. Перемещение Солнца порождает у наблюдателя ощущение смещения близких к нам звезд; их кажущееся движение характеризуется некоторой кажущейся скоростью, а величина последней зависит от расстояния каждой звезды. Это точная аналогия кажущегося движения ландшафта, наблюдаемого из окна идущего поезда: ближняя зона местности "движется" быстрее, чем отдаленная. Поскольку наблюдение перспективного смещения звезд производится в течение ряда лет (к нашим дням период накопления точных фотографий звездного неба насчитывает почти сто лет), появляется возможность оценки звездных расстояний, намного превышающих те, что доступны прямым тригонометрическим методам, использующим в качестве базиса диаметр земной орбиты. Для этого совершенно необходимо, однако, отличать изменение положения звезд, возникающее вследствие движения Солнца (и Земли вместе с ним) по направлению к Веге, от относительного "собственного движения" отдельных звезд. Движение Солнца сквозь пространство выводится статистически из результатов наблюдений кажущегося движения очень большого числа звезд; остаточное систематическое движение приписывается подлинному движению Солнца. Вывести величины, характеризующие движение солнечной системы среди звезд, - дело сложное; оно требует большого числа наблюдений и большой вычислительной работы. Между тем совершенно таким же делом занят мозг человека, движущегося сквозь многолюдную площадь, или управляющего автомобилем в густом потоке движения, или ведущего самолет в строю других самолетов. Пределы способности мозга к обработке величин и направлений скоростей, заданных меняющейся перспективой множества объектов, движущихся относительно некоторой поверхности, неизвестны. Исследовать это было бы чрезвычайно интересно.

Разумный глаз img_87.jpg

Рис. 77. В этом звездном скоплении видны объекты весьма разной яркости. В среднем чем дальше звезда, тем меньше ее блеск, но некоторые тусклые звезды на самом деле находятся близко, только их собственная светимость мала. Они кажутся далекими, но в действительности это не так

Расстояния до далеких звезд приходится измерять непрямыми способами, при которых применять геометрию уже нельзя. Все эти способы основаны на некоторых допущениях, не поддающихся прямой проверке.

Ясно, что если бы собственная светимость всех звезд была одинакова, то относительные расстояния до звезд можно было бы узнать довольно легко, исходя из универсального закона, связывающего блеск звезды с расстоянием до нее (видимый блеск обратно пропорционален квадрату расстояния). Но светимость звезд (их "абсолютная звездная величина") очень сильно варьирует, и поэтому видимый блеск звезды может служить лишь очень приблизительной оценкой ее удаленности. Все же звезды поддаются классификации: исходя из спектров звезд (и еще некоторых величин), их можно разбить на группы с известной светимостью. Тогда становится возможной и оценка расстояний по видимому блеску - при условии, что применяются верно выбранные константы для построения шкал оценки светимости звезды и учитываются все факторы, обусловливающие потерю света на пути от звезды к наблюдателю. Свет может ослабеть, проходя сквозь облака межзвездного газа, и это надо обязательно учитывать, чтобы не возникло ошибки в оценке расстояния, основанной на видимом блеске звезды. Неверно выбранная константа шкалы приведет к ошибке - и она будет похожа на те ошибки в оценке расстояний, которые совершаются зрением в тумане или в дыму.

вернуться

8

Годичный параллакс звезды (Веги) впервые был измерен русским ученым В. Я. Струве в 1837 году. - Прим, перев.

вернуться

9

Точнее, парсек - расстояние, с которого большая полуось земной орбиты, перпендикулярная к лучу зрения, видна под углом в 1". - Прим, перев.