Изменить стиль страницы

Почти 20 лет назад я с коллегами из ВНИИ биосинтеза белковых веществ занялся поисками гетерологичных фагов для передачи генов чумному микробу, т. е. для трансдукции. Теоретическим обоснованием этого послужили данные о неабсолютой специфичности многих фагов [Амиров Э. Я., Домарадский И. В., 1981]. В конечном итоге, мы остановились на общетрансдуцирующем фаге Р1; выбор был предопределен, в частности, результатами опытов D. A. Smith и T. Burrows [1962], выявившими общие рецепторы фага Р1 у кишечной палочки и чумного микроба. Вскоре выяснилось, что фаги Р1 (Р1vir и P1сlr) пригодны для наших целей (их применение оказалось весьма эффективным средством трансдукции. С помощью фагов Р1 от кишечной палочки чумному микробу были переданы различные плазмиды, в том числе неконъюгативные или те, которые нельзя было передать с помощью конъюгации из-за явления поверхностного исключения, хромосомные гены [а. с. СССР «Метка» № 2251932/0001/001 от 15.02.1978 г.], а также фаг лямбда, маркированный транспозоном [а. с. СССР № 2269917/0005/005 от 1.09.78 г.]. Ныне предложенный нами принцип трансдукции широко применяют другие авторы, как в России, так и за рубежом.

3.5.4. Аутохтонные плазмиды

Косвенные указания на наличие собственных плазмид у чумного микроба были получены Е. Г. Кольцовой [1970], которой впервые удалась передача кишечной палочке пестициногенности от чумного микроба. Однако поиски их были заторможены утверждением R. Little и R. Brubaker [1972] о том, что чумной микроб плазмид не имеет. Тем не менее совместно с сотрудниками Кировского НИИЭГ, я все же продолжил соответствующие исследования. В моей лаборатории работали с вакцинными штаммами EV, 1 и 17, применяя для анализа ДНК электронную микроскопию, а в НИИЭГ использовали также вирулентные штаммы, а ДНК подвергали электрофорезу в агарозном геле. В результате совместных усилий плазмиды были обнаружены. Более того, удалось установить связь патогенности (вирулентности) чумного микроба с плазмидами, что нашло отражение в формуле открытия [диплом на открытие «Плазма» № 001 от 27.06.83 г. с приоритетом от 27.12.77 г., неопубликовано]. С тех пор факт наличия плазмид у чумного микроба и их связь с вирулентностью стали непреложной истиной. Заметим, что за рубежом первые подтверждения этого стали появляться только с 1980–1981 гг.

Сейчас у чумного микроба основными считаются три плазмиды, которые кодируют свойства, указанные в табл.14 и подробно описанные в разделе 3.8. Вместе с тем начинают появляются данные о наличии у чумного микроба других плазмид, функции которых полностью еще не вскрыты [Butler T., 1983; Tsukano H. A. et al.,1986].

Таблица 14. Плазмиды чумного микроба и кодируемые ими свойства
Чума i_025.png

Примечание. Сведения о генетических функциях pFra нужно уточнять.

Из числа основных плазмид чумного микроба постоянным атрибутом вирулентных штаммов Y. enterocolitica и Y. pseudotuberculosis. является только одна, мол. масса которой колеблется в пределах 45–47 мДа. [Portnoy D. A., Martinez R, 1985; Skurnik M., 1985; и др.]

Все известные плазмиды чумного микроба и близкородственных иерсиний относятся к неконъюгативным. Передача их возможна только за счёт мобилизации гетерологичными конъюгативными плазмидами [Кольцова T. Г., 1970] или трандукции [собственные данные; Wolf-Watz H. et al., 1985].

Плазмидам иерсиний посвящено множество литературных источников и поэтому анализировать все относящиеся к ним данные здесь нет возможности.

3.6. «Мышиный» токсин

По данным E. S. Baker и соавт. [1952], токсин чумного микроба входит в состав водорастворимых компонентов клетки, представляющих собой её поверхностные («оболочечные») антигены; водонерастворимый же остаток клеток содержит «соматический» антиген, общий для микробов чумы и псевдотуберкулёза (Sch(tze H., 1932). Из водного экстракта клеток токсин может быть осажден при 55–67 %-концентрации сульфата аммония («фракция II» или FII). Характерной особенностью этого токсина оказалось то, что он вызывал гибель белых мышей и крыс, но не морских свинок. Поэтому его назвали «мышиным». Однако прежде чем перейти к рассмотрению последнего укажем, что помимо токсина в водном экстракте клеток содержится также капсульный антиген, который осаждается при более низкой концентрации сульфата аммония и поэтому еще называется «фракцией I» или «FI» (см. раздел 3.8.3).

Мышиный токсин является белком, входящим в состав цитоплазматической мембраны. С помощью проточного электрофореза на бумаге он был разделен на два компонента — субъединицы А и В. Субъединица А имеет мол. массу 240 кДа, а субъединица В (120 кДа и содержит значительно меньше триптофана, чем субъединица А. В свою очередь, при обработке SDS обе субъединицы распадаются на полипептиды с мол. массами от 12 до 24 кДа, которые сохраняют токсичность. Обе субъединицы отличаются высоким содержанием дикарбоновых аминокислот и низким содержанием цистеина. Однако для сохранения токсичности остатки цистеина очень важны, равно как важны и остатки триптофана. Удельная активность субъединицы А выше, чем таковая субъединицы В [Montie T. S., Ajl S. J., 1970; Montie T. C., Montie D. B., 1973].

Подобно любому белку мышиный токсин обладает антигенными свойствами. Очищенный токсин, смешанный с адъювантом Фрейнда, вызывает у кроликов образование антитоксина, способного нейтрализовать токсин из вирулентных и авирулентных штаммов чумного микроба. Токсин сенсибилизирует танизированные эритроциты, которые в реакции гемагглютинации могут служить для определения уровня антитоксина в крови, и связывает комплемент. Очищеннный токсин не вступает в реакцию с антикапсульными сыворотками, а антитоксин не реагирует с FI [Warren J. et al., 1955]. Однако антитоксические сыворотки не предохраняют против чумы, а токсин нельзя превратить в настоящий анатоксин, хотя при соответствующей обработке он теряет токсичность и продолжает связываться со специфическими антителами. От таких истинных экзотоксинов, как, например, дифтерийный или столбнячный, мышиный токсин отличается еще двумя признаками. Во-первых, при его введении нет латентного периода (при надлежащей дозе действие проявляется сразу же), а, во-вторых, отсутствует прямая связь между вирулентностью и токсичностью культур. Кроме того, хотя в картине интоксикации, вызванной мышиным токсином, и много общего с картиной чумы [Домарадский И. В., 1966; Sch(r M., Meyer K.,1956; Cocking E.C. et al., 1960], все же некоторые симптомы чумной интоксикации очень сходны с симптомами интоксикации, вызываемой эндотоксинами (табл. 15). На основании всего сказанного, мы не согласны с теми, кто, подобно T. Butler [1983], мышиный токсин называет «экзотоксином».

Таблица 15. Сравнительные показатели физиологических изменений в организме под влиянием чумных токсинов и при инфекции [Butler Т., 1983]
Чума i_026.png

Говоря о мышином токсине, нельзя не упомянуть о том, что некоторые авторы, например, О. А. Проценко и соавт. [1983], его генетический контроль связывают с плазмидой pFra, молекулярная масса которой лежит в пределах 61–65 мДа.

3.7. Эндотоксин

В течение многих лет выделить эндотоксин чумного микроба («полный антиген», как его называли раньше) никому не удавалось. Во всяком случае это не удалось ни G. Girard [1941; цит. по Коробковой Е. И. и др., 1944], независимо от того, имел ли он дело с вирулентными или авирулентными штаммами, ни Е. И. Коробковой и соавт. [1944], которые исследовали как шероховатные, так и гладкие колонии чумного микроба. Как считает T. Butler [1983], возможная причина этого заключалась в наличии у чумного микроба толстой белковой капсулы (FI), которая при применявшихся тогда методах мешала выделению эндотоксина. Проблему удалось решить лишь а 1956 г., когда D. A. Davies для извлечения липополисахарида (ЛПС) чумного микроба использовал водно-фенольную экстракцию. Препарат был свободен от белка и нуклеиновых кислот и содержал глюкозу, глюкозамин, альдопентозу, на долю которой приходилась большая часть остатка полисахарида Позднее этот сахар был идентифицирован как L-глицероманнопентоза [Foster A. B. et al, 1958] Химическое сходство ЛПС чумного микроба и ЛПС кишечной палочки было установлено D. S. Ellewood [1968], идентифицировавшим 3-дезокси-D-маннооктулозу (КДО) в составе ядра ЛПС чумного микроба.