Изменить стиль страницы

  Возможен и другой подход к тем же проблемам теории оптимального управления. Пусть s (х, t ) значение функционала (9) вдоль оптимального решения. Тогда для того чтобы функция

Большая Советская Энциклопедия (ВА) i-images-138000218.png
 была оптимальным управлением, необходимо (а в некоторых случаях и достаточно), чтобы функция s (х, t ) удовлетворяла следующему дифференциальному уравнению с частными производными:

 

Большая Советская Энциклопедия (ВА) i-images-186442312.png

  называемому уравнением Беллмана (см. Динамическое программирование ).

  Круг вопросов, которыми занимается В. и., непрерывно расширяется. В частности, всё большее и большее внимание уделяется изучению функционалов J (x ) весьма общего вида, задаваемых на множествах Gx элементов из нормированных пространств. Для задач такого рода уже трудно использовать метод вариаций. Возникли новые методы, основанные на использовании понятия конуса в банаховых пространствах, опорных функционалов и т.д.

  Уже в 19 в. была обнаружена глубокая связь между некоторыми проблемами теории уравнений с частными производными и вариационными задачами. П. Дирихле показал, что решение краевых задач для уравнения Лапласа эквивалентно решению некоторой вариационной задачи. Эта проблема привлекает к себе всё больше и больше внимания. Рассмотрим один пример.

  Предположим, что имеется некоторое линейное операторное уравнение

  Ax = f,      (11)

  где х (x, h) — некоторая функция двух независимых переменных, обращающаяся в нуль на замкнутой кривой Г. При предположениях, естественных для некоторого класса задач физики, задача отыскания решения уравнения (11) эквивалентна отысканию минимума функционала

 

Большая Советская Энциклопедия (ВА) i-images-153468971.png

  где W — область, ограниченная кривой Г.

  уравнение (11) в этом случае является уравнением Эйлера для функционала (12). Редукция задачи (11) к (12) возможна, например, если А — самосопряжённый и положительно определённый оператор. Оператор Лапласа

 

Большая Советская Энциклопедия (ВА) i-images-170656836.png

  удовлетворяет этим требованиям. Связь между проблемами для уравнений с частными производными и вариационными задачами имеет большое практическое значение. Она позволяет, в частности, устанавливать справедливость различных теорем существования и единственности и сыграла важную роль в кристаллизации понятия об обобщённом решении. Эта редукция очень важна также и для вычислит, математики, поскольку она позволяет использовать прямые методы вариационного исчисления.

  В перечислении основных разделов современного В. и. нельзя не указать на глобальные задачи В. и., решение которых требует качественных методов. Искомое решение вариационной задачи удовлетворяет некоторому сложному нелинейному уравнению и краевым условиям. Естественно поставить вопрос о том, сколько решений допускает эта задача. Примером такой задачи является вопрос о количестве геодезических, которые можно провести между двумя точками на заданной поверхности. Проблема подобного рода относится уже к компетенции качественной теории дифференциальных уравнений и топологии. Последнее обстоятельство очень характерно. Методы, специфические для смежных дисциплин, топологии, функционального анализа и т.д., всё шире начинают применяться в В. и. В свою очередь, идеи В. и. проникают во всё новые области математики, и грань между В. и. и смежными областями математики теперь провести уже трудно.

  Лит.: Лаврентьев М. А., Люстерник Л. А., Курс вариационного исчисления, 2 изд., М. — Л., 1950; Блисе Г. А., Лекции по вариационному исчислению, пер. с англ., М., 1950; Михлин С. Г., Вариационные методы в математической физике, М., 1957; Смирнов В. И., Курс высшей математики, 5 изд., т. 4, М., 1958; Гельфанд И. М., Фомин С. В., Вариационное исчисление, М., 1961; Математическая теория оптимальных процессов, М., 1969.

  Н. Н. Моисеев.

Вариационные принципы механики

Вариацио'нные при'нципы меха'ники. Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.

  Невариационные принципы механики непосредственно устанавливают закономерности движения, совершаемого системой под действием приложенных к ней сил. К этим принципам относятся, например, 2-й закон Ньютона, согласно которому при движении любой точки системы произведение её массы на ускорение равно сумме всех приложенных к точке сил, а также Д'Аламбера принцип . Невариационные принципы справедливы для любой механической системы и имеют сравнительно простое математическое выражение. Однако их применение ограничено только рамками механики, поскольку в выражения принципов непосредственно входит такое чисто механическое понятие, как сила. Существенно также следующее. В большинстве задач механики рассматривается движение несвободных систем, то есть систем, перемещения которых ограничены связями (см. Связи механические ). Примерами таких систем являются всевозможные машины и механизмы, а также наземный транспорт и др., где связями являются подшипники, шарниры, тросы и т.п., а для наземного транспорта — ещё и полотно дороги или рельсы. Чтобы изучить движение несвободной системы, исходя из невариационных принципов, надо и эффект действия связей заменить некоторыми силами, называемыми реакциями связей. Но величины этих реакций заранее неизвестны, поскольку они зависят от того, чему равны и где приложены действующие на систему заданные (активные) силы, такие, например, как силы тяжести, упругости пружин, тяги и др., а также от того, как при этом движется сама система. Поэтому в составленные уравнения движения войдут дополнительные неизвестные величины в виде реакций связей, что обычно существенно усложняет весь процесс решения.

  Преимущество В. п. м. состоит в том, что из них сразу получаются уравнения движения соответствующей механической системы, не содержащие неизвестных реакций связей. Достигается это тем, что эффект действия связей учитывается не заменой их неизвестными силами (реакциями), а рассмотрением тех перемещений или движений (или же приращений скоростей и ускорений), которые точки этой системы могут иметь при наличии данных связей. Например, если точка М движется по данной гладкой (идеальной) поверхности, являющейся для неё связью (рис. 1 ), то действие этой связи можно учесть, заменив связь заранее неизвестной по величине реакцией N, направленной в любой момент времени по нормали Mn к поверхности (поскольку по этому направлению связь не даёт перемещаться точке). Но эффект этой же связи можно учесть, установив, что для точки в данном случае при любом её положении возможны лишь такие элементарные перемещения, которые перпендикулярны к нормали Mn (рис. 2 ); такие перемещения называются возможными перемещениями . Наконец, эффект той же связи может быть охарактеризован и тем, что при этом движение точки из некоторого положения А в положение  В возможно только по любой кривой АВ, лежащей на поверхности, которая является связью (рис. 3 ); такие движения называются кинематически возможными.