Изменить стиль страницы

  x (t ) Î e , x (T) Î eT      (5)

  где e и eT — некоторые множества. Простейшим примером условий типа (5) являются условия (2). Функция x (t ) и функция u (t ), которую называют управлением, связаны условием

  dx/dt = f (x, u, t),     (6)

  где f — дифференцируемая вектор-функция своих аргументов. Рассматриваемая задача состоит в следующем: определить функции x (t ) и u (t ), доставляющие экстремум функционалу

 

Большая Советская Энциклопедия (ВА) i-images-144202473.png

  Заметим, что и простейшая задача В. и. и изопериметрическая задача являются частным случаем задачи Лагранжа.

  Задача Лагранжа имеет огромное прикладное значение. Пусть, например, уравнение (6) описывает движение какого-либо динамического объекта, например космического корабля. Управление u — это вектор тяги его двигателя. Множества e и eT — это две орбиты разных радиусов. Функционал (7) описывает расход горючего на выполнение маневра. Следовательно, задачу Лагранжа, применительно к данной ситуации, можно сформулировать следующим образом: определить закон изменения тяги двигателя космического аппарата, совершающего переход с орбиты e на орбиту eT за заданное время так, чтобы расход топлива на этот маневр был минимальным.

  Важную роль в теории подобных задач играет функция Гамильтона

  H (x, y, u) = (f, y) - F.

  Здесь y — вектор, называется множителем Лагранжа (или импульсом), (f, y) означает скалярное произведение векторов f и y . Необходимое условие в задаче Лагранжа формулируется следующим образом: для того чтобы функции

Большая Советская Энциклопедия (ВА) i-images-170641252.png
 и
Большая Советская Энциклопедия (ВА) i-images-116295910.png
 были решением задачи Лагранжа, необходимо, чтобы
Большая Советская Энциклопедия (ВА) i-images-184761954.png
 была стационарной точкой функции Гамильтона Н (х, y, u), то есть, чтобы при

 

Большая Советская Энциклопедия (ВА) i-images-115014854.png

  было ¶H/u = 0, где y — не равное тождественно нулю решение уравнения

  ¶y/t = —¶H/¶x = j(x, y, u, t).      (8)

  Эта теорема имеет важное прикладное значение, так как она открывает известные возможности для фактического нахождения векторов x (t ) и u (t ).

  Развитие В. и. в 19 в. Основные усилия математиков в 19 в. были направлены на исследование условий, необходимых или достаточных для того, чтобы функция x (t ) реализовала экстремум функционала J (x ). уравнение Эйлера было первым из таких условий; оно аналогично необходимому условию

 

Большая Советская Энциклопедия (ВА) i-images-190341339.png

  которое устанавливается в теории функций конечного числа переменных. Однако в этой теории известны ещё и другие условия. Например, для того, чтобы функция f (x ) имела в точке

Большая Советская Энциклопедия (ВА) i-images-116706371.png
 минимум, необходимо, чтобы в этой точке было

 

Большая Советская Энциклопедия (ВА) i-images-132493309.png

  каков бы ни был произвольный вектор h. Естественно поставить вопрос: в какой степени эти результаты переносятся на случай функционалов? Для того чтобы представить себе сложность, которая здесь возникает, заметим, что функция

Большая Советская Энциклопедия (ВА) i-images-179468519.png
 может реализовать минимум среди функций одного класса и не давать минимум среди функций другого класса и т.д.

  Подобные вопросы послужили источником разнообразных и глубоких исследований А. Лежандра , К. Якоби , М. В. Остроградского , У. Гамильтона , К. Вейерштрасса и многих других. Эти исследования не только обогатили математический анализ, но и сыграли большую роль в формировании идей аналитической механики и оказали серьезное влияние на развитие разнообразных отделов теоретической физики.

  Развитие В. и. в 20 в. В 20 в. возник целый ряд новых направлений В. и., связанных с интенсивным развитием техники, смежных вопросов математики и вычислительной техники. Одно из основных направлений развития В. и. в 20 в. — рассмотрение неклассических задач В. и., приведшее к открытию принципа максимума Л. С. Понтрягина.

  Рассмотрим снова задачу Лагранжа: определить минимум функционала

 

Большая Советская Энциклопедия (ВА) i-images-114744513.png

  при условии

 

Большая Советская Энциклопедия (ВА) i-images-133555799.png

  фазовый вектор x (t ) должен удовлетворять ещё некоторым граничным условиям.

  В своей классической постановке условия задачи Лагранжа не предусматривают никаких ограничений на управление u (t ). Выше (см. раздел Условный экстремум. Задача Лагранжа) подчёркивалась тесная связь между задачей Лагранжа и задачей управления. В рассмотренном там примере u (t ) тяга ракетного двигателя. Эта величина подчинена ограничениям: тяга двигателя не может превосходить некоторой величины, и угол поворота вектора тяги также ограничен. В данном конкретном примере компонента ui (i = 1,2,3) вектора тяги двигателя подчинена ограничениям

 

Большая Советская Энциклопедия (ВА) i-images-128409460.png

  где а- i и a+ i — некоторые заданные числа. Подобных примеров можно привести много.

  Таким образом, в технике появилось много задач, которые сводятся к задаче Лагранжа, но при дополнительных ограничениях типа (10), записываемых в форме u Î Gu , где Gu — некоторое множество, которое, в частности, может быть замкнутым. Такие задачи получили название задач оптимального управления. В задаче Лагранжа можно исключить управление u (t ) при помощи уравнения (8) и получить систему уравнений, которая содержит только фазовую переменную х и множитель Лагранжа j . Для теории оптимального управления должен был быть разработан специальный аппарат. Эти исследования привели к открытию принципа максимума Л. С. Понтрягина. Он может быть сформулирован в форме следующей теоремы: для того чтобы функции

Большая Советская Энциклопедия (ВА) i-images-189961316.png
 и
Большая Советская Энциклопедия (ВА) i-images-132272181.png
 были решением задачи оптимального управления чтобы они доставляли минимум функционалу (9)], необходимо, чтобы u (t ) доставляла максимум функции Гамильтона

 

Большая Советская Энциклопедия (ВА) i-images-159081006.png

  где y — множитель Лагранжа (импульс), который является ненулевым решением векторного уравнения

 

Большая Советская Энциклопедия (ВА) i-images-140294529.png

  Принцип максимума позволяет свести задачу оптимального управления к краевой задаче для системы обыкновенных дифференциальных уравнений порядка 2n (n — размерность фазового вектора). Принцип максимума и в этом случае даёт более сильный результат, чем теорема Лагранжа, поскольку он требует, чтобы

Большая Советская Энциклопедия (ВА) i-images-185886969.png
 было не стационарным значением функции Гамильтона Н, а доставляло максимум Н.