Изменить стиль страницы

Для прямолинейно движущейся точки вторая производная характеризует её ускорение.

  Аналогично определяются и производные более высокого (целого) порядка. Производная порядка n обозначается

  yn, fn (x), dny/dxn, dnf/dxn или Dnf (x).

  Дифференциал. Функция у = f (x), область определения которой содержит некоторую окрестность точки х, называется дифференцируемой в точке x, если её приращение

  Dy = f (x + Dx) - f (x)

можно записать в форме

  Dу = АDх + aDх,

где А = А (x), a = a(х, x) ® 0 при х ® x. В этом и только в этом случае выражение ADx называется дифференциалом функции f (x) в точке x и обозначается dy или df (x). Геометрически дифференциал (при фиксированном значении x и меняющемся приращении Dx) изображает приращение ординаты касательной, т. е. отрезок NT (см. рис.). Дифференциал dy представляет собой функцию как от точки х, так и от приращения Dх. Говорят, что дифференциал есть главная линейная часть приращения функции, понимая под этим, что, при фиксированном х, dy есть линейная функция от Dх и разность Dy - dy есть бесконечно малая относительно Dx. Для функции f (x) º х имеем dx = Dх, т. е. дифференциал независимого переменного совпадает с его приращением. Поэтому обычно пишут dy = Adx. Имеется тесная связь между дифференциалом функции и её производной. Для того чтобы функция от одного переменного y = f (x) имела в точке x дифференциал, необходимо и достаточно, чтобы она имела в этой точке (конечную) производную f' (x), и справедливо равенство dy = f' (x) dx. Наглядный смысл этого предложения состоит в том, что касательная к кривой y = f (x) в точке с абсциссой x как предельное положение секущей является также такой прямой, которая в бесконечно малой окрестности точки x примыкает к кривой более тесно, чем любая другая прямая. Таким образом, всегда А (х) = f' (x); запись dy/dx можно понимать не только как обозначение для производной f' (x), но и как отношение дифференциалов зависимого и независимого переменных. В силу равенства dy = f' (x) dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил нахождения производных.

  Рассматриваются также дифференциалы высших порядков. На практике с помощью дифференциалов часто производят приближённые вычисления значений функции, а также оценивают погрешности вычислений. Пусть, например, надо вычислить значение функции f (x) в точке х, если известны f (x) и f' (x). Заменяя приращение функции её дифференциалом, получают приближённое равенство

  f (x1) » f (x) + df (x) = f (x) + f' (x) (x1 - x).

Погрешность этого равенства приближённо равна половине второго дифференциала функции, т. е.

  1/2 d2f = 1/2 f" (x)(x1x)2.

  Приложения. В Д. и. устанавливаются связи между свойствами функции и её производных (или дифференциалов), выражаемые основными теоремами Д. и. К их числу относятся Ролля теорема, формула Лагранжа f (a) — f (b) = f' (c)(bа), где a < с < b (подробнее см. Конечных приращений формула), и Тейлора формула.

  Эти предложения позволяют методами Д. и. провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, выпуклость и вогнутость, возрастание и убывание функций, их экстремумы, найти их асимптоты, точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер её особых точек и т.д. Например, условие f' (x) > 0 влечёт за собой (строгое) возрастание функции у = f (x), а условие f" (x) > 0 — её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f' (x) = 0.

  Исследование функций при помощи производных составляет основное приложение Д. и. Кроме того, Д. и. позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и ¥/¥ (см. Неопределённое выражение, Лопиталя правило). Д. и. особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме.

  Д. и. функций многих переменных. Методы Д. и. применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х, у) частной производной по х называется производная этой функции по х при постоянном у. Эта частная производная обозначается z'x, f'x (x, y), ¶z/х или ¶f (x, y)/¶x, так что

 

Большая Советская Энциклопедия (ДИ) i-images-167222669.png

Аналогично определяется и обозначается частная производная z по у. Величина

  Dz = f (x + Dx, y + Dy) - f (x, y)

называется полным приращением функции z = f (x, y). Если его можно представить в виде

  Dz = ADx + ВDу + a,

где a — бесконечно малая более высокого порядка, чем расстояние между точками (х, у) и (х + Dх, у + Dу), то говорят, что функция z = f (x, y) дифференцируема. Слагаемые АDх + ВDу образуют полный дифференциал dz функции z = f (x, y), причём А = z'x, B = z'y. Вместо Dx и Dy обычно пишут dx и dy, так что

 

Большая Советская Энциклопедия (ДИ) i-images-122703991.png

  Геометрически дифференцируемость функции двух переменных означает существование у её графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy. Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка ещё не гарантирует дифференцируемости функции. Однако, если частные производные кроме того ещё непрерывны, то функция дифференцируема.