Изменить стиль страницы

Гипергидроз

Гипергидро'з (от гипер... и греч. hidros — пот), чрезмерное потоотделение, потливость, у здоровых людей Г. может наблюдаться при высокой температуре окружающей среды как один из механизмов терморегуляции, при повышенной физической нагрузке. Общий Г. может наблюдаться при некоторых эндокринных заболеваниях, различных инфекциях и интоксикациях, а также при поражении гипоталамической области головного мозга. Местный Г. (потливость ладоней, стоп, подмышечных впадин и др.,) может зависеть от повышенной возбудимости нервной системы. Г. предрасполагает к простудным заболеваниям, гнойничковой и грибковой инфекциям (проникновение возбудителей через разрыхленный поверхностный слой кожи), потертостям.

  Лечение: устранение причины Г.; гигиеническое содержание тела, общеукрепляющее лечение, иногда — физиотерапия, местно-антисептические и адсорбирующие средства.

Гипергликемия

Гипергликеми'я (от гипер... и гликемия), увеличение содержания сахара в крови выше 120 мг%. Временная Г. может появиться у здоровых людей после приема больших количеств сахара (т. н. пищевая Г.), при сильных болях, эмоциональных напряжениях и др. Стойкая Г. встречается при диабете сахарном, некоторых др. эндокринных заболеваниях, гиповитаминозах С и B1, лихорадке, гипоксии и др.

Гиперемия

Гипереми'я (от гипер... и греч. haima — кровь), полнокровие, увеличение кровенаполнения ткани или органа. Различают артериальную Г. и венозную Г. Артериальная (активная) Г. возникает вследствие усиления притока крови по артериям при повышении тонуса сосудорасширяющих или снижении тонуса сосудосуживающих нервов. Причины: повышение чувствительности сосудов к физиологическим раздражителям, влияние чрезвычайных раздражителей (бактериальные токсины, высокая температура, продукты тканевого распада и др.); у человека большую роль играют психогенные факторы (стыд, гнев и др.). Характеризуется расширением артерий в гиперемированном участке, повышением его температуры, ускорением кроветока, покраснением (например, Г. лица). Сопровождается усилением обменных процессов в тканях и способствует их регенерации. При патологических изменениях в сосудах при артериальной Г. могут возникать кровоизлияния. С лечебной целью артериальную Г. вызывают горчичниками, банками. Венозная (пассивная, застойная) Г. происходит при нарушении оттока крови по венам при неизменном притоке вследствие сдавления венозной стенки (рубец, опухоль, варикозное расширение вен, отёк и др.). ослаблении сердечной деятельности. Характеризуется замедлением кроветока вплоть до его полной остановки. Развивается кислородное голодание тканей, повышается проницаемость сосудистой стенки, образуется отёк. Длительный застой крови и отёк могут привести к атрофии паренхимы органа.

  В. А. Фролов.

Гиперзаряд

Гиперзаря'д, одна из характеристик сильно взаимодействующих элементарных частиц (адронов), равная сумме барионного заряда и странности.

Гиперзвук

Гиперзву'к, упругие волны с частотой от 109 до 1012—1013 гц; высокочастотная часть спектра упругих волн. По физической природе Г. ничем не отличается от ультразвука, частоты которого простираются от 2·104 до 109 гц. Однако благодаря более высоким частотам и, следовательно, меньшим, чем в области ультразвука, длинам волн значительно более существенными становятся взаимодействия Г. с квазичастицами среды — электронами, фононами, магнонами и др.

  Область частот Г. соответствует частотам электромагнитных колебаний дециметрового, сантиметрового и миллиметрового диапазонов (т. н. сверхвысоким частотам — СВЧ). Используя технику генерации и приёма электромагнитных колебаний СВЧ, удалось получить и начать исследование частот Г. ~ 1011 гц.

  Частоте 109 гц в воздухе при нормальном атмосферном давлении и комнатной температуре соответствует длина волны Г. 3,4·10-5 см, т. е. эта длина одного порядка с длиной свободного пробега молекул в воздухе при этих условиях. Поскольку упругие волны могут распространяться в упругой среде только при условии, что длины этих волн заметно больше длины свободного пробега в газах (или больше межатомных расстояний в жидкостях и твёрдых телах), то в воздухе и газах при нормальном атмосферном давлении гиперзвуковые волны не распространяются. В жидкостях затухание Г. очень велико и дальность распространения мала. Сравнительно хорошими проводниками Г. являются твёрдые тела в виде монокристаллов, но главным образом лишь при низких температурах. Так, например, даже в монокристалле кварца, отличающемся малым затуханием упругих волн, на частоте 1,5·109 гц продольная гиперзвуковая волна, распространяющаяся вдоль оси Х кристалла, при комнатной температуре ослабляется по амплитуде в 2 раза при прохождении расстояния всего в 1 см. Однако имеются проводники Г. лучше кварца, в которых затухание Г. значительно меньше (например, монокристаллы сапфира, ниобата лития, железо-иттриевого граната и др.).

  Долгое время гиперзвуковые волны не удавалось получать искусственным путём (в этом одна из причин выделения этой области спектра упругих волн, названной «гиперзвуком»), поэтому изучали Г. теплового происхождения. Твёрдое кристаллическое тело можно представить как некоторую объёмную пространственную решётку, в узлах которой расположены атомы или ионы. Тепловое движение представляет собой непрерывные и беспорядочные колебания этих атомов около положения равновесия. Такие колебания можно рассматривать как совокупность продольных и поперечных плоских упругих волн самых различных частот — от самых низких собственных частот упругих колебаний данного тела до частот 1012—1013 гц (далее спектр упругих волн обрывается), распространяющихся по всевозможным направлениям. Эти волны называют также дебаевскими волнами, или тепловыми фононами.

  Фонон представляет собой элементарное возбуждение решётки кристалла или квазичастицу с энергией ћn и импульсом ћn/c, где n — частота, с — скорость звука в кристалле и ћ. — постоянная Планка. Фонону соответствует плоская упругая волна определ. частоты подобно тому, как фотону соответствует плоская электромагнитная волна определённой частоты. Тепловые фононы имеют широкий спектр частот, тогда как искусственно получаемый Г. может иметь какую-нибудь одну определенную частоту. Поэтому искусственно генерируемый Г. можно представлять как поток когерентных фононов (см. Когерентность). В жидкостях тепловое движение имеет характер, близкий к характеру теплового движения в твёрдых телах, поэтому в жидкостях, как и в твёрдых телах, тепловое движение непрерывно генерирует некогерентные гиперзвуковые волны.

  До того как стало возможным получать Г. искусственным путём, изучение гиперзвуковых волн и их распространения в жидкостях и твёрдых телах проводилось главным образом оптическим методом. Наличие Г. теплового происхождения в оптически прозрачной среде приводит к рассеянию света с образованием нескольких спектральных линий, смещенных на частоту Г. n, т. н. Мандельштама — Бриллюэна рассеяние. Исследования Г. в ряде жидкостей привели к открытию в них зависимости скорости распространения Г. от частоты и аномального поглощения Г. (см. Дисперсия звука).