Изменить стиль страницы

Если заглянуть в будущее, то "космические захватчики" могут появиться в новых формах, таких как рои беспилотников (как во многих современных боевиках), гиперзвуковые ракеты или кибернетические полезные нагрузки. Например, рассмотрим авианосец, атакуемый большим количеством баллистических и гиперзвуковых крылатых ракет. Эффективная защита от такой атаки зависит от быстрой обработки и анализа больших объемов данных, использования результатов для определения приоритетности целей, выявления вариантов поражения и выбора подходящего из них. Скорость, с которой это должно происходить, и время, в течение которого это может быть необходимо поддерживать, вероятно, превысят способность человека эффективно управлять обороной авианосца. Достижения в области машинного обучения могут позволить эффективное автономное поведение в таких обстоятельствах. В последние годы произошли значительные улучшения в приложениях для обработки сигналов, которые могут ускорить и улучшить интеграцию данных, генерируемых сетью датчиков. Сочетание ИИ и слияния датчиков может помочь определить, какие нападающие должны быть задействованы, в какой последовательности, и какие перехватчики лучше использовать. Предвестник этой "алгоритмической войны" произошел во время ракетного обстрела Израиля из Газы в 2021 году. Железный купол", израильская система противоракетной обороны, сыграла решающую роль в ограничении ущерба от этих атак. Когда ракетные обстрелы происходили большими залпами - "ливнем" ракет - управляемый ИИ компьютер определял, когда и где запустить израильские перехватчики.

В ночь с 5 на 6 января 2018 года неизвестные напали с тринадцати вооруженных беспилотников на российскую авиабазу Хмеймим и соседнюю военно-морскую базу Тартус в Сирии. Россияне отбили атаку, используя сочетание средств противовоздушной обороны и радиоэлектронной борьбы. 14 сентября 2019 года более двадцати начиненных взрывчаткой беспилотников, запущенных Ираном или одной из его сторонних организаций, нанесли удар по нефтяным объектам Саудовской Аравии в Абкайке, крупнейшем в мире центре стабилизации сырой нефти. Беспилотники вывели из строя около 5,7 миллиона баррелей в день добычи нефти, что составляет примерно 5 процентов от общего мирового объема.

Хотя эти атаки были скоординированы, маловероятно, что беспилотники управлялись единым алгоритмом роения, основанным на ИИ. Атаки роения могут показаться аморфными; однако, согласно данному определению, они намеренно структурированы и скоординированы, способны осуществляться с нескольких направлений. Со временем развитие ИИ может позволить осуществлять высоко скоординированные атаки сотен или даже тысяч автономных систем, что было бы невозможным для человеческих контролеров.

Что произойдет, когда защитники столкнутся с гораздо более масштабной атакой беспилотников, использующих сложное управление на основе ИИ? Этот вопрос мог показаться причудливым несколько лет назад. Сейчас он кажется гораздо менее фантастичным. В начале 2019 года Иран провел учения под названием "Путь в Иерусалим", в которых участвовали 50 беспилотников, которые, по утверждению Тегерана, действовали скоординированно и наносили удары по заранее определенным целям на территории протяженностью более 500 миль.

Ведущие военные страны мира стремятся использовать ИИ для обеспечения беспилотникам возможности действовать роем. В январе 2017 года ВМС США провели испытания роя из 103 беспилотников, запущенных с трех самолетов F/A-18. Беспилотники общались друг с другом независимо от управления человеком и продемонстрировали продвинутое поведение роя, такое как коллективное принятие решений, адаптивный полет в строю и самовосстановление.

ВМС США - не единственная служба в вооруженных силах США, изучающая потенциал роев. В рамках проекта ВВС США "Золотая орда" высокоточные управляемые боеприпасы соединяются с миниатюрной воздушной приманкой (MALD), которая после запуска работает как автономный рой. Этот рой может помочь самолетам проникать через вражескую противовоздушную оборону, обманывая или просто подавляя ее. Им также может быть дано указание определять приоритетность конкретных целей и поражать любые "всплывающие" цели, которые неожиданно появляются во время полета. Если некоторые беспилотники в рое будут оснащены датчиками и средствами связи, они смогут проводить оценку боевого ущерба, передавая изображения цели непосредственно перед ударом оружия и после него. Эти данные могли бы поступать в алгоритм искусственного интеллекта компьютера, цель которого - быстро, непрерывно и автономно изменять приоритеты целей дронов по мере необходимости. Прогресс на сегодняшний день обнадеживает. В мае 2021 года в ходе испытаний в Уайт-Сэндс, штат Нью-Мексико, два самолета F-16 одновременно выпустили оружие - четыре с одного самолета и два с другого, после чего оружие установило связь друг с другом, получая в полете информацию о цели с наземной станции, которая направляла их на переключение внимания на более приоритетную цель. В ходе испытаний также было успешно обнаружено, что два оружия выполняют синхронизированную одновременную атаку по времени на цель.

Соединенные Штаты - далеко не единственная страна, применяющая технологию роя. На закрытии китайского форума Global Fortune в Гуанчжоу 7 декабря 2018 года хозяева установили мировой рекорд по самому большому рою дронов, когда-либо развернутому. В течение почти десяти минут 1180 дронов маневрировали как единая группа, танцуя и координированно мигая огнями в рамках воздушного шоу. Фирма Ehang, предоставившая рой, оценивает каждый дрон примерно в 1 500 долларов, включая каналы передачи данных и программное обеспечение, используемое для управления. Эти дроны могут маневрировать в пределах отклонения полета в два сантиметра по горизонтали и один сантиметр по вертикали. Если дрон не может достичь запрограммированной позиции, он автоматически приземляется, не угрожая целостности роя.

Китай имеет амбициозные планы в отношении своих роев. Один из них предусматривает вывод роя беспилотников в ближний космос в составе ударных сил "комбинированного оружия", состоящих из стелс-дронов, гиперзвуковых аппаратов и высотных дирижаблей. Очень сложный, гетерогенный рой, включающий в себя разведывательные, командные и управляющие и ударные элементы, может быть выпущен пилотируемыми самолетами, такими как истребители и бомбардировщики, и даже другими дронами. Если НОАК реализует свое видение , она создаст новый тип управляемого ИИ разведывательно-ударного комплекса, способного значительно сократить последовательность боевых действий.

Операции роя не обязательно будут ограничены воздушной областью. Рассмотрим, например, современные противокорабельные мины. Мобильные интеллектуальные мины могут действовать как рой, позиционируя себя как минное поле и поддерживая это поле, несмотря на вражеские операции по тралению, обнаруживая, где в поле появляются бреши, и закрывая их на основе того, какие географические точки (например, дроссельные пункты) имеют приоритет охвата. Соответственно, обороняющаяся сторона, в зависимости от сложности своего ИИ, может использовать подводные дроны в группах охотников-убийц для траления мин, направленных на обнаружение, выведение из строя и/или уничтожение роя минных полей, управляемого ИИ.

Развитие роев может быть ограничено не столько достижениями в области ИИ, сколько другими факторами, такими как двигательная установка и связь. Относительно безыскусные атаки дронов, описанные здесь, с участием большого количества небольших дронов, несущих скромную полезную нагрузку, предполагают, что их дальность может быть весьма ограниченной. Конечно, дроны могут быть доставлены системами дальнего радиуса действия, такими как малозаметные бомбардировщики или большие "арсенальные беспилотники". Однако даже простые рои могут атаковать очень ценные цели, особенно те, где для уничтожения или вывода из строя цели требуется лишь небольшое количество взрывчатки или шрапнели. На самом деле, многие крупные, сложные платформы, такие как военные корабли и самолеты, сильно зависят от "мягких" компонентов, таких как радары и стелс-покрытия, которые даже небольшой заряд взрывчатки, правильно установленный, может сделать неэффективными. Рои беспилотников также могут быть особенно хорошо приспособлены для атак на подстанции электросетей и другие ключевые стационарные объекты критической инфраструктуры.

Например, предположим, что небольшие беспилотники со скромной полезной нагрузкой могут быть запущены достаточно близко к авианосцу - скажем, с подводной лодки, коммерческого судна или с берега, когда авианосец проходит через узловую точку. Нынешние средства противовоздушной обороны могут оказаться серьезным испытанием против роя из сотен таких нападающих. Какие варианты открыты для защитника? Один из вариантов - оружие широкого радиуса действия, похожее на дробовик, чьи очереди могут уничтожить целый рой маленьких, хрупких дронов. Прогресс в области высокоэнергетических лазеров, пороховых и рельсовых пушек также может позволить эффективно защищаться от атак роя. Многое, конечно, будет зависеть от темпа стрельбы и способности эффективно нацеливаться и вступать в бой на высоких скоростях. Это может потребовать принятия решений на основе ИИ, особенно в отношении идентификации целей и определения приоритетов, особенно в ситуациях, когда атаки продолжаются более нескольких минут или около того.