Изменить стиль страницы

К счастью, существует другой способ решения проблемы слишком большого количества измерений: уменьшение размерности. Снижение размерности - это математическая техника, которая позволяет получить информацию в высокоразмерном пространстве и представить ее с помощью меньшего количества измерений. Она основана на предположении, что некоторые из этих исходных измерений являются избыточными - в данном случае это означает, что несколько нейронов говорят одно и то же. Если бы вы смогли выяснить, какие паттерны нейронной активности в 100-мерной популяции являются фундаментальными для этой популяции, а какие - просто переработанными комбинациями этих фундаментальных паттернов, вы могли бы объяснить эту нейронную популяцию с помощью меньшего количества измерений, чем 100.

Рассмотрим личность. Сколько существует измерений человеческой личности? В английском языке есть головокружительный список возможных описаний: покладистый, гибкий, самокритичный, добрый, прощающий, творческий, харизматичный, спокойный, умный, дисциплинированный, агрессивный, дотошный, серьезный, умный и так далее, и так далее, и так далее. Каждую из этих черт можно рассматривать как отдельное измерение, и каждый человек описывается местом в этом высокоразмерном пространстве личности в зависимости от того, какие баллы он набрал по ним. Но есть некоторые черты личности, которые, похоже, коррелируют между собой. "Умные" люди могут также часто считаться "быстро соображающими". Возможно, было бы правильнее рассматривать сообразительность и быстроту мышления как два показателя одной и той же базовой черты - возможно, мы назовем ее "интеллектом". Если это так, то два измерения, представляющие сообразительность и быстроту мышления в этом пространстве, можно заменить одним для интеллекта. Это уменьшит размерность. Если есть только случайные люди, которые умны, но не быстро соображают, или быстро соображают, но не умны, то это сокращение не принесет больших жертв. Для подавляющего большинства людей описание их по одному только интеллекту скажет нам все, что мы должны знать об этих аспектах их личности.

Действительно, большинство популярных тестов личности основаны на предпосылке, что всего несколько основных черт могут объяснить все человеческое разнообразие. Например, знаменитый тест Майерс-Бриггс утверждает, что личность имеет всего четыре оси: интуиция против чувствительности, чувства против мышления, интроверсия против экстраверсии и восприятие против суждения. Более научно обоснованный подход (известный как "Большая пятерка") определяет размерность личности по пяти осям: согласованность, невротизм, экстраверсия, добросовестность и открытость. Эти факторы называют "латентными", поскольку их можно рассматривать как основные базовые черты, которые порождают множество различных стилей личности, которые мы наблюдаем.

Исторически сложившаяся в нейронауке традиция рассматривать каждый нейрон как снежинку - уникальную и достойную индивидуального анализа - предполагает, что они в каком-то смысле являются базовой единицей мозга. То есть предполагается, что природа упаковала соответствующие измерения в аккуратную клеточную форму. Но точно так же, как наши народные представления о личности преувеличивают ее размерность, существует множество причин, по которым "истинная" размерность нейронной популяции, скорее всего, меньше, чем количество нейронов в ней. Например, избыточность - разумное свойство, которое должно присутствовать в любой биологической системе. Нейроны шумят и могут погибнуть, поэтому система с избыточными нейронами более надежна. Кроме того, нейроны, как правило, сильно взаимосвязаны. Вряд ли какой-либо из них может оставаться независимым, поскольку все они переговариваются друг с другом. Вместо этого их активность становится коррелированной, подобно тому, как сближаются мнения людей, принадлежащих к одному социальному кругу. По этим причинам нейронные популяции как нельзя лучше подходят для применения методов снижения размерности, которые помогут выявить скрытые факторы, действительно движущие ими.

Популярным методом снижения размерности нейронных данных является анализ главных компонент, или PCA (см. рис. 19). PCA был изобретен в 1930-х годах и широко использовался психологами для анализа психических свойств и способностей. Благодаря своей полезности для осмысления больших наборов данных он теперь применяется для всех видов данных во многих областях.

PCA работает за счет фокусировки на дисперсии. Дисперсия означает, насколько разбросаны различные точки данных. Например, если в течение трех ночей человек спит 8 часов, 8 часов и 5 минут и 7 часов и 55 минут, то он относится к категории людей с низкой дисперсией. Человек с высокой дисперсией сна тоже может спать в среднем 8 часов, но распределять их по трем ночам будет совсем по-другому - скажем, 6 часов, 10 часов и 8 часов.

Показатели с высокой дисперсией важны, потому что они могут быть весьма информативны. Например, легче определить эмоциональное состояние человека, который иногда молчит, а иногда кричит, чем стоика, у которого всегда одно и то же прямое лицо. Точно так же легче классифицировать людей по чертам, которые сильно различаются между собой, а не по тем, которые у всех общие. Признавая важность дисперсии, цель PCA - найти новые измерения, которые являются комбинацией исходных измерений, подобно тому как интеллект может быть комбинацией сообразительности и быстроты мышления, и которые отражают как можно большую дисперсию в данных. Это означает, что, зная, куда попадает точка данных в соответствии с этими новыми измерениями, мы сможем многое о ней узнать, даже если их будет меньше.

Например, рассмотрим популяцию из двух нейронов, активность которых мы хотели бы описать одним числом. Допустим, мы регистрировали активность этих двух нейронов во время различных движений, поэтому для каждого движения у нас есть пара чисел, представляющих количество спайков от каждого из них. Если мы построим график этих пар, используя ось x для одного нейрона и ось y для другого, мы увидим, что данные падают более или менее вдоль линии. Эта линия и будет нашим новым измерением. Теперь, вместо того чтобы описывать активность во время каждого движения как пару чисел, мы можем описать ее как одно число, которое относится к тому, где она падает на этой линии.

img_19.jpeg

Рисунок 19

Уменьшая размерность таким образом, мы теряем часть информации. Мы не знаем, например, как далеко активность находится от этой линии, если мы только описываем, где она падает на нее - но смысл в том, чтобы выбрать линию, которая захватывает наибольшую дисперсию и, таким образом, теряет наименьшую информацию.

Если данные не ложатся вдоль линии - то есть активность двух нейронов совсем не похожа, - то это не очень хорошо работает. В этом случае мы бы сказали, что эта двумерная нейронная популяция действительно использует все свои два измерения и поэтому не может быть уменьшена. Но, как уже говорилось ранее, существует множество причин, по которым в среднем некоторая нейронная активность является избыточной и поэтому сокращение размерности возможно.

Редукция размерности успешно применяется ко всем видам нейронных данных на протяжении многих лет. Сам метод PCA был применен еще в 1978 году, когда с его помощью было показано, что активность восьми нейронов, отвечающих за кодирование положения колена, может быть хорошо представлена всего одним или двумя измерениями. А в последнее десятилетие использование PCA в исследованиях моторной коры только расширяется. Это связано с тем, что снижение размерности помогает ученым-мотористам увидеть то, что иначе было бы скрыто. Если свести подъемы и спады активности более сотни нейронов в одну линию, то их закономерности станут видны невооруженным глазом. Взгляд на эволюцию активности популяции как на форму, прорисованную в трех измерениях, позволяет ученым использовать свои интуитивные представления о пространстве , чтобы понять, что делают нейроны. Таким образом, наблюдение за этими траекториями может зародить новые истории о том, как работает двигательная система.

Например, в начале 2010-х годов в лаборатории Кришны Шеноя в Стэнфордском университете изучали, как моторная кора готовится к движениям. Для этого обезьян обучали выполнять стандартные движения руками, но вводили задержку между моментом, когда давалось указание на движение, и моментом, когда животное должно было начать движение. Это позволило записывать данные из моторной коры, пока она готовилась к движению.

Долгое время считалось, что при подготовке к движениям нейроны моторной коры головного мозга будут работать по схеме, аналогичной той, что они работают во время движения, только с меньшей общей частотой. То есть, по сути, они говорят то же самое, но тише. В пространстве нейронной активности это означало бы, что подготовительная активность идет в том же направлении, что и двигательная активность, но просто не так далеко. Однако, построив низкоразмерную версию нейронной активности, когда животное планировало, а затем выполняло движение, исследователи обнаружили, что это не так. Активность перед движением не была просто сдержанной версией активности во время движения; напротив, она занимала совершенно другую область пространства активности.

Этот вывод, хотя и удивительный, согласуется с более современным взглядом на моторную кору. Этот новый взгляд делает акцент на том, что моторная кора является динамической системой - нейроны в ней взаимодействуют таким образом, что способны создавать сложные паттерны активности с течением времени. Благодаря этим взаимодействиям между нейронами моторная кора способна принимать короткие, простые сигналы и производить ответ сложные и длинные сигналы. Это означает, что другая область мозга может решить, где должна быть рука, послать эту информацию в моторную кору, а моторная кора выработает полную траекторию нейронной активности, необходимую для того, чтобы рука оказалась там.