Изменить стиль страницы

Специальными радиоприемниками можно регистрировать излучаемые Солнцем радиоволны с длинами волн от 1 см до 40 м. Солнечное излучение на других длинах волн, вне пределов этих двух участков, с поверхности Земли не регистрируется. Этому мешает земная атмосфера. Если же регистрирующую аппаратуру поднять на ракетах выше тех уровней в атмосфере, где солнечное излучение данной длины волны поглощается, то интенсивность его может быть измерена. Впервые такая возможность появилась во время второй мировой войны. Для этих целей были использованы соответствующие ракеты, поднявшие в верхнюю атмосферу спектрографы и фотоэлектрические детекторы.

Для того, чтобы выяснить, до каких глубин в атмосферу проникает солнечное излучение определенной длины волны, надо знать состав атмосферы, то есть количество атомов или молекул, которые могут поглотить это излучение на каждой высоте. Кроме того, надо знать коэффициенты поглощения солнечного излучения атмосферой, то есть эффективность этого поглощения. Таким путем были определены высоты проникновения солнечного излучения. Поглощение излучения с длинами волн больше 210 нм обязано озону. Несмотря на то, что суммарное количество озона очень незначительно, он уменьшает солнечное излучение с длиной волны 250 нм в 1040 раз. Поэтому спектр солнечного излучения при его измерении с поверхности Земли обрывается на волне 290 нм.

В верхней атмосфере, где плотность газа невелика, молекулы кислорода и азота поглощают энергию коротковолновой (ультрафиолетовой) области солнечного излучения. Часть поглощаемой энергии расходуется на увеличение кинетической энергии частиц, или, другими словами, на нагрев атмосферы. До уровня 80 км доходит сверху очень малая часть ультрафиолетового излучения Солнца. Здесь его поглощение незначительно, а потому мал и обусловленный им нагрев атмосферы. Температура ее имеет здесь минимальное значение.

Но еще ниже длинноволновую часть ультрафиолетового излучения (до длины волны 300 нм) поглощает озон. Это вызывает сильный нагрев атмосферного газа, несмотря на малое количество озона. Эффективность нагрева велика потому, что плотность потока солнечного излучения в этом интервале длин волн больше, чем в коротковолновой части ультрафиолетового диапазона. Кроме того, излучение в этом интервале слабо поглощается в вышележащих областях атмосферы. Максимум нагрева атмосферы за счет поглощения озоном солнечного излучения приходится на высоту около 50 км.

Чем ближе к поверхности Земли, тем меньше становится ультрафиолетового излучения, которое могло бы быть поглощено озоном. Оно уже поглотилось ранее. Поэтому эффективность нагрева атмосферы уменьшается. Этому же способствует и рост плотности воздуха с уменьшением высоты: чем плотнее воздух, тем его труднее нагреть. Поэтому температура ниже 50 км с уменьшением высоты уменьшается (но только до определенного уровня — тропопаузы).

Видимый свет в земной атмосфере поглощается очень незначительно. В диапазоне ближнего инфракрасного излучения его поглощают углекислый газ и водяной пар. Это поглощение особенно эффективно в нижней области тропосферы, где водяного пара больше, нежели в любой другой части атмосферы.

Коротковолновое излучение Солнца поглощается поверхностным слоем Земли, нагревая его. Участки суши прогреваются на меньшую глубину, чем вода. Они же и теряют тепловую энергию быстрее. Часть этой энергии уходит в атмосферу в виде длинноволнового излучения. Максимальная плотность потока длинноволнового излучения Земли приходится на длины волн вблизи 10 000 нм (10 мкм). Земное излучение с длинами волн 5–7 мкм и более 12 мкм поглощается водяным паром, который находится в нижнем слое атмосферы. Углекислый газ поглощает земное излучение с длинами волн 4–5 мкм и более 14 мкм. Излучение с длинами волн 8 — 11 мкм мало поглощается атмосферой. Только вблизи длины волны 9,6 мкм излучение поглощает стратосферный озон.

Солнечное излучение в атмосфере не только поглощается, но и рассеивается: на атомах, молекулах и более крупных частицах. Рассеивается излучение равновероятно во все стороны. Поэтому в нижнюю полусферу попадает только половина рассеянного изучения. А до поверхности Земли доходит только часть этой половины. Далее, не вся энергия дошедшего до Земли коротковолнового излучения будет истрачена на нагрев почвы. Часть ее отразится обратно вверх. Так, поверхность, покрытая льдом, может отразить 75 % и более падающего на нее солнечного излучения. Песок отражает приблизительно 1/3, травяной покров — 0,1, а вода — всего 2 % падающего на нее солнечного излучения.

Нижние слои атмосферы в пределах тропосферы нагреваются при контакте с земной поверхностью и при последующем переносе теплого воздуха вверх в результате турбулентного движения. Этот нагрев зависит как от падающей на земную поверхность лучистой энергии, так и от характера земной поверхности.

В том месте, где воздух нагрет до более высокой температуры, его плотность меньше. Поэтому и давление воздуха в разных местах земного шара в данный момент времени будет различным. Ясно, что оно зависит от освещенности земной поверхности солнечным излучением и от характера подстилающей поверхности. С течением времени распределение давления меняется, так как меняются условия освещенности. Это приводит воздух в движение. Он устремляется от мест, где давление повышено, к тем областям, где оно понижено. Такие горизонтальные движения воздуха есть не что иное, как ветер. Чем больше перепад давления, тем сильнее ветер. Эти горизонтальные движения воздуха связаны с вертикальными (конвективными) движениями следующим образом. В области пониженного давления воздух сходится к центру области. Далее, нагреваясь, воздух поднимается вверх. Там, где давление повышено, воздух опускается вниз и растекается во все стороны от этой области.

С движениями воздуха очень тесно связан и озон. Он или вовлекается в эти движения, или оказывается изолирован от них. Поэтому движения воздуха в погодном слое и выше должны быть проанализированы.

Было показано, что наибольшие горизонтальные скорости движения воздуха (то есть ветры) имеют место в областях, где давление понижено, потому что перепад давления в горизонтальном направлении в этом случае больше, чем в областях повышенного давления.

Тепловая энергия, переданная воздуху, благодаря ветру переносится из одного места земного шара в другое. Такой перенос наряду с переносом энергии в результате циркуляции опасен, приводит к перераспределению энергии, получаемой Землей от Солнца. Так, холодные Антарктида и Арктика и горячие экваториальные области соединяются этой циркуляцией воздуха и воды. Благодаря этому избыточное тепло из области экватора переносится в полярные районы, где имеется значительный дефицит лучистой энергии. Дефицит вызван тем, что в этих районах теряется больше энергии, чем приходит от Солнца. Благодаря этому перераспределению энергии средние за ряд лет приход и расход энергии в масштабе всей Земли равны друг другу, то есть энергетический баланс сохраняется.

ОТКУДА БЕРЕТСЯ

И КАК РАЗРУШАЕТСЯ ОЗОН

Когда солнечное излучение проходит через атмосферу Земли, оно взаимодействует с атомами и молекулами различных химических элементов атмосферного газа. Что при этом происходит? Если кванты излучения имеют достаточную энергию, то они отрывают от атомов и молекул по одному орбитальному электрону. При этом атом расщепляется на два осколка. Одним из них является электрон, а другим — атом без одного орбитального электрона. Такой атом называют ионом, а процесс — ионизацией. Электрический заряд такого иона является положительным, поскольку один единичный положительный заряд ядра остается некомпенсированным, оторванным орбитальным электроном. Если от атома оторван один электрон, то атом ионизован однократно. Если два — то атом дважды ионизован. В земной атмосфере ионы образованы в результате однократной ионизации. Солнечное излучение успешно производит ионизацию атомов и молекул вещества. Поэтому выше 50 км образуются ионы и свободные электроны (в равных количествах). Чем выше, тем и концентрация больше. Если на высоте 100 км днем их примерно 10 тысяч в 1 см3, то на высотах 300–350 км это число увеличивается в сотни раз и составляет миллионы частиц в том же объеме. На этих высотах достигается максимум концентрации ионов и свободных электронов. Вся ионизованная часть атмосферы Земли называется ионосферой. Ее с таким же успехом можно было назвать электроносферой.