Изменить стиль страницы

Но когда-то кончается и гелий. Причем значительно быстрее, чем кончился водород. Когда это произойдет, то звезда теряет свои наружные слои. Они расширяются и отделяются от ядра звезды. Эти слои впоследствии наблюдаются как планетарная туманность. После этого момента события будут развиваться по одному из трех вариантов (сценариев). Какой из вариантов реализуется, это зависит только от массы звезды. Если масса звезды меньше 1,2 массы теперешнего Солнца, то вещество звезды под действием гравитационного сжатия уплотняется таким образом, что его плотность достигает 10 тысяч тонн в кубическом сантиметре. При такой огромной плотности атомы разрушаются. После этого сжатие звезды прекращается, так как ему начинает противодействовать сила упругости образованного очень плотного газа. Такая звезда (ее называют «мертвой») является белым карликом. Напомним, что до того, как звезда превратится в белого карлика, она некоторое время становится красным гигантом. Затем белый карлик в течение нескольких миллиардов лет остывает и в конце концов превращается в черного карлика, то есть в тело, которое уже не излучает. Звезда умирает и перестает излучать. Специалисты часто ее называют «трупом». Во Вселенной имеется бесконечное количество кладбищ звезд, превратившихся в черных карликов. Эта судьба ждет и наше Солнце, которое когда-то было и красным гигантом. Но оно сбросило лишнее вещество и из него образовались планеты нашей системы, в том числе и Земля. Что происходит со звездами, масса которых больше 1,2 массы Солнца, мы подробно описали в книге «Внеземные цивилизации» (ЭКИЗ, 1993). Здесь только скажем, что те из звезд, масса которых больше 1,2, но меньше 10 масс Солнца, в конце концов превращаются в нейтронные звезды. Это очень уникальные объекты. Плотность вещества такой звезды равна плотности вещества внутри атомного ядра! Получить такое вещество на Земле невозможно. Если же масса звезды превышает 10 масс Солнца, то она превращается в черную дыру, радиус которой равен всего 1–3 км. Так сильно ужимается (и уплотняется) вещество столь массивной и первоначально огромной звезды.

Но вернемся к Солнцу. Предшественник Солнца красный гигант сбросил с себя вещество, которое состояло в значительной мере из тяжелых химических элементов. Этот сброс происходит в виде взрыва. После того, как красный гигант сбрасывает свою шубу, он превращается в сверхновую звезду. Ученые слово «звезда» опускают и говорят просто «сверхновая». Таким образом наше Солнце после стадии красного гиганта превратилось в сверхновую звезду. Но при этом в околосолнечное пространство оно сбросило лишнее вещество, из которого и образовались планеты Солнечной системы. Это происходило так.

Спустя несколько сотен миллионов лет околосолнечное облако сброшенного Солнцем вещества стало постепенно остывать. При этом в нем стали появляться твердые частицы пыли. Все частицы облака находились в движении вокруг Солнца и постепенно стали двигаться в экваториальной плоскости Солнца, образуя своего рода диск. Это были струи твердых частиц и газов, занимающие пространство в форме диска и движущиеся вокруг Солнца. По законам движения происходила сортировка частиц по их величине и плотности: чем ближе к Солнцу, тем вещество приобретало большую плотность. Поэтому планеты земной группы, которые находятся ближе к Солнцу, чем остальные, образовались из более плотного вещества. Поэтому они и меньше по размерам. Это Меркурий, Венера, Земля и Марс. Более далекие планеты образовались из летучих элементов и более легких газов. Поэтому они и по размерам больше. Это Юпитер, Сатурн, Уран, Нептун и Плутон.

Примерно 5 миллиардов лет назад «вырисовался» зародыш Земли. Но процесс ее формирования продолжался в течение примерно еще одного миллиарда лет. Только после этого Земля стала постепенно остывать и превратилась в холодное безжизненное скопление космического вещества. Но спустя сотни миллионов лет это остывшее вещество вновь стало разогреваться, но уже по другим причинам. Энергия для этого поступала от ударов космических тел, а также вследствие радиоактивного распада химических элементов. Расплавилось ли при этом земное вещество полностью или только частично, сказать трудно. Ясно одно, что жидкое (или частично жидкое) вещество Земли получило возможность под действием силы притяжения перераспределиться по плотности вещества, по его удельному весу. При этом самое плотное вещество, состоящее из тяжелых элементов и соединений, стремилось к центру Земли. Во внутреннем составе Земли преобладает железо (35 %); за ним идет кислород (30 %), далее следуют кремний (15 %) и магний (12 %). Вещество Земли содержит значительное количество радиоактивного вещества, при распаде которого выделяется тепло. Этого тепла достаточно для того, чтобы поднять температуру в самой середине Земли до 6 000 °C. Под действием сил тяжести и тепла сформировалась и структура Земли: в ее сердцевине находится ядро, которое окружено мантией. Снаружи мантию покрывает земная кора.

Ядро Земли состоит из двух частей — внутренней и внешней. Внешняя граница земного ядра находится на глубине 2 900 км. Ниже этой границы (то есть в ядре) плотность вещества увеличивается скачком на 80 %. Внешняя часть ядра является жидкой. Внутренняя часть ядра состоит из железоникелевого сплава и ведет себя как твердое тело. Давление в центре ядра, а значит и в центре Земли, достигает 3 миллионов атмосфер. Температура там достигает 10 000 °C. Во внутренней части ядра сосредоточено только 1,7 % всей массы Земли. Более массивной является внешняя часть ядра. Она содержит почти треть всей массы Земли. Но плотность вещества во внешней части ядра значительно меньше, чем во внутренней, поскольку оно разбавлено легкой серой. Ее там содержится до 14 %.

Полагают, что сразу после образования Земли ее ядро было целиком расплавленным. Затем оно постепенно стало остывать, и на сегодняшний день расплавлена только его внешняя часть. Любопытно, что внешняя граница ядра не является идеальным шаром. Это слой со своеобразным рельефом, толщина которого в разных местах разная — от 150 до 350 км.

Ядро Земли окружено мантией. Она простирается от 30–50 до 2 900 км в глубину. Порода мантии содержит в себе 80 % оливина (Mg, Fe)2 [SiO4] и 20 % пироксена (Mg, Fe)2 [S2O6]. Эту породу называют перидотитом. Она представляет собой зеленоватые минералы, силикаты магния и железа.

В мантии также высокая температура. Поэтому глубинные породы расплавляются и превращаются в магму. Эта магма по трещинам прорывается наверх в виде лавы. Собственно Земля на 82 % состоит из мантии. Она, естественно, неоднородна. Ученые делят ее на верхнюю и нижнюю. Но самым важным элементом, прослойкой мантии является слой в верхней мантии, в котором породы находятся в частично расплавленном состоянии. Расплав составляет всего 1–3 %. Но этого достаточно, чтобы обеспечивать весьма своеобразную динамику всей вышележащей части Земли. Из-за слабого расплава вещества в этом слое он был назван «астеносферой» («астенос» — слабый). Это слаборасплавленное вещество не является жидкостью, и течь оно не может. Но оно служит своего рода «смазкой», по которой перемещаются жесткие литосферные плиты, которые образуют верхнюю твердую оболочку Земли. Эта оболочка и называется «литосферой» (от греческого «литос» — камень).

Земная кора имеет разную толщину на материках и под океанами. Она толще всего там, где вздымаются могучие горные хребты. Океаническая кора тоньше континентальной. Состав их также различен. Океаническая кора состоит из двух слоев — базальтового и осадочного. Базальты — это темно-зеленая или даже черная силикатная порода, которая содержит кальций, натрий, магний и железо (а иногда и алюминий). Океаническая кора выделяется из самого верхнего слоя мантии, который под дном океана находится на глубине всего 10–50 км. Там, в верхнем слое мантии, порода находится в расплавленном состоянии и оттуда по трещинам поступает наверх, где и застывает, образуя базальтовый слой океанической коры.