Изменить стиль страницы

Кеплер думал, что световое вещество истекает непрерывно и движется с бесконечной скоростью. А во времена Ньютона Ремер уже доказал конечность скорости света. Ньютону виделась иная картина, чем Кеплеру: истечение прерывистого светового вещества. И при этом световые корпускулы разного цвета представлялись ему тельцами разной величины — красные были самыми большими, фиолетовые — самыми маленькими, и, соответственно своим размерам, они двигались, по его предположению, с разными скоростями.

Что еще мог сказать Ньютон о придуманных им корпускулах? Чтобы объяснить преломление света, он сказал, что корпускулы притягиваются веществом призмы. А для объяснения отражения света он снабдил их еще и противоположной способностью — отталкиваться от вещества. В объяснении нуждалось множество явлений, и с ньютоновыми корпускулами получалось примерно то же, что с эфиром: им надо было приписывать все новые и новые противоречивые качества.

Сознавая это, а еще больше, вероятно, предвидя будущие затруднения, Ньютон так же не настаивал на своей теории истечения, как и на дальнодействии через пустоту. «Я гипотез не строю». На том и на другом настаивали его ученики. Они были, как говорят в Риме, правовернее папы.

Весь XVIII век господствовала теория истечения, весь XIX век — теория волновая. В долгой борьбе Гюйгенс, казалось, навсегда победил Ньютона: волновая теория, хоть и опиравшаяся на предательский эфир, объясняла такие явления, в которых никак не могли быть повинны прямолинейно летящие корпускулы.

Вот одно из них, прекрасно описанное М. Минартом в его известной книге «Свет и цвет в природе»:

«…Ночь. Вдалеке шум автомобиля, приближающегося к нам. Его фары бросают ослепительные лучи света на широкую дорогу. Велосипедист случайно пересекает эти ослепительные лучи так, что мы на мгновенье оказываемся в его тени. И тогда внезапно силуэт велосипедиста обрисовывается удивительно красивым светом, как будто излучаемым краем силуэта. Тот же эффект можно наблюдать у пешеходов и у деревьев».

Но ведь это значит, что свет способен огибать препятствия? И не «как бы огибать», а действительно делать это.

Да. Совершенно так же, как морские волны огибают мол. Это называется дифракцией (все на той же ученой латыни). Однако поток световых частиц, как пригоршня с силой брошенных песчинок, загибаться за край преграды не мог бы. Это неотъемлемое свойство волн. Оно и принесло теории Гюйгенса торжество. Идеи Ньютона должны были отступиться.

Но… «никогда не должно пренебрегать предвидениями или гаданиями гениальных людей». Это сказал французский физик и астроном Араго. Замечательно, что сам он, крупный ученый, работая в середине XIX века над биографией Ньютона, не счел нужным хотя бы словом обмолвиться об его корпускулярной теории, — такой незыблемой казалась тогда теория волновая. Он пренебрег «предвидениями и гаданиями» Ньютона, хотя о гениальности его говорил на каждой странице.

Оказывается, чтобы не пренебрегать чем-нибудь, надо знать заранее, чего оно стоит!

Араго знал, что корпускулы света — вчерашний день физики, но он не знал, что они еще и предвидение. Такие вещи всегда узнаются задним числом. Когда появились кванты Планка и фотонная теория Эйнштейна, о забытых корпускулах Ньютона вспомнили все.

Но как раз теперь-то воспоминание о них уже ничего существенного не могло дать науке: в физических свойствах фотонов и старых корпускул не было почти ничего общего. И фотоны появились не потому, что Эйнштейн вспомнил о Ньютоне раньше других, а потому, что одной волнообразно-волнообразностьюсвета уже нельзя было объяснить новых фактов. Пришлось увидеть еще и прерывистый град там, где прежде усматривали лишь непрерывный ветер. Но всего удивительней — и об этом рассказ впереди, — что пришлось вернуться к частицам, не отвергая волн.

…Хотя цепь, пожалуй, и замкнулась, биография фотона на этом, конечно, не обрывается. Скорее, здесь только и начинается главное. Правда, это главное исторически вовсе не было связано с биографией частицы света: нам надо прикоснуться к физическим прозрениям еще одной революционной теории в естествознании XX века — теории относительности. Надо заглянуть в странный неклассический мир открытых ею законов движения материи. В наших «путевых заметках» без этого не обойтись. (Один остроумный философ говорил, что о гуляющем человеке никогда нельзя сказать, будто он делает крюк. Такой «крюк» и есть самый маршрут прогулки.)

Так попробуем, вопреки истории рождения идей теории относительности и вопреки общепринятым традициям рассказа о них, попробуем взять себе в провожатые по странному миру этих идей именно фотон, как одну из «первооснов материи». Может быть, тогда этот мир предстанет перед нами весомо, грубо и зримо — не как абстракция, а как физическая неизбежность.

Глава четвертая

«Сейчас вы сами придете к теории относительности!» — Свет нельзя остановить. — Странные размышления гимназиста Эйнштейна. — Каменное зеркало ацтеков. — Смятение старого учителя. — Незыблемые законы висят на волоске. — Не надо осуждать классиков. — Простота удивительной формулы. — В легком и быстром мире… — Сомнения возникают и рассеиваются.

1

Когда люди уславливаются разговаривать о представлениях современной физики без всякой математики и сверх того без физических терминов, они сразу превращаются в глухонемых или в путешественников, заброшенных зовом неодолимого любопытства к неведомым людям на неведомые острова: там уж не до подробностей, лишь бы кое-как объясниться. Однако не прекращать же из-за своего косноязычия начатого путешествия!

В отличие от старой энциклопедии подходящий том энциклопедии новой, разумеется, содержит слово «фотон». Но то, что мы там прочтем, облегчения нам не доставит: справка написана для тех, кто и без того осведомлен в предмете — знает, что энергия фотона равна «аш-ню», а масса покоя равна нулю, а «спин» равен единице и, следовательно, фотон подчиняется статистике Бозе-Эйнштейна, а не Ферми-Дирака, и прочее и прочее, что для подавляющего большинства человечества есть книга за семью печатями. Винить тут энциклопедию не за что: она разрослась бы до тысячи томов, если бы давала объяснения, а не только справки.

Самое простое, самое глубокое и самое непостижимое в справке о фотоне — это то, что его масса покоя равна нулю! Смущают слова и «покой» и «нуль». Сначала о нуле…

Мы справедливо привыкли считать массу мерой количества материи. Услышав, что есть частицы без массы, а нулевая величина — это отсутствующая величина, мы вправе немедленно возразить: «Значит, таких частиц не существует!» Можно ли заставить «ас поверить в нематериальные тела?

Так неужели физики могли примириться с подобным вздором?! Отчего бы они, изучающие законы физического мира, захотели вводить в свою науку рассмотрение чего-то нематериального?

Как же в таком случае быть с нулевой массой фотона? Прежде всего надо отнестись к ней со вниманием: речь идет не о массе вообще, а о массе покоя. Это маленькое добавление здесь всего важнее. Оно сразу подсказывает нашему убежденному материалистическому сознанию единственный выход из затруднения: раз физики утверждают, что масса покоящегося фотона равна нулю, значит покоящихся фотонов не бывает в природе! А какие же фотоны бывают? Выбора нет: только движущиеся. Иными словами, свет нельзя остановить!

Здесь надо на минуту задержаться. (Мы ведь путешественники, а путешественники, даже торопясь, замедляют шаг, когда на их пути возникает нечто диковинное.)

Как хитроумно выглядит фраза: «масса покоящегося фотона равна нулю»! И как просто звучат три слова: «свет остановить нельзя»! Конечно, это оттого, что первое выражение — научное, логически дисциплинированное, а второе — вольное, похожее на крылатую, но ни для кого не обязательную стихотворную строку. Так вправду ли эти выражения — столь разные, что они не совпадают ни в едином слове, — означают одно и то же? Хоть это и кажется удивительным, убедиться в этом очень легко.