Самостоятельная работа: испытать последовательное соединение нескольких светодиодов. Также интересно проверить разные резисторы, номиналом от 100 до 1000 Ом, и посмотреть, насколько сильно будет отличаться яркость светодиодов во всех случаях.

1.5 Опыты с диодом

Кроме светодиодов, существуют и обычные диоды. Нам впрочем, они не так уж часто будут пригождаться, но знать об их свойствах стоит. Диод - это полупроводниковый элемент, способный проводить ток только в одном направлении.

Цифровая электроника для начинающих _39.jpg

Направление тока легко запомнить, представив изображение диода как воронку для воды - очевидно что лить воду нужно в “широкую” часть. Можно взять самую первую схему с лампочкой и батарейкой, и включить в цепь диод. Легко убедиться, что если перевернуть диод, лампочка гореть не будет. Это может пригодиться, например если нужно защитить схему от неправильной полярности подключения.

Вторая полезная схема, которая может пригодиться - использование резервного питания:

Цифровая электроника для начинающих _40.jpg

В такой схеме схема работает от внешнего блока питания на 12В, также имеется резервная 9-вольтовая батарея. Ток может течь через диод только “от большего к меньшему”. Поэтому когда напряжение блока питания присутствует (а 12В > 9В), диод D2 “закрывает” батарею, если напряжения нет, схема будет работать от батареи.

Диоды также используются в любом блоке питания - они преобразуют переменный ток в постоянный. Такая схема подключения называется “диодный мост”.

Цифровая электроника для начинающих _41.jpg

По схеме несложно увидеть, что при любой входной полярности на верхнем выходе всегда будет “+”, а на нижнем “-”.

Самостоятельная работа: собрать схему из диодного моста, светодиода и резистора. Убедиться, что подключенный через мост, светодиод горит при любой полярности подключения батареи.

1.6 Опыты с конденсатором

Конденсатор - это элемент, способный накапливать электрический ток. Первый конденсатор был изобретен еще в 1745 году в голландском городе Лейдене, тогда он часто назывался “лейденской банкой” (leiden jar). Фактически, это и была банка, оклеенная изнутри и снаружи фольгой. Обкладки конденсатора способны накапливать электрический заряд, т.к. через изолятор электроны пройти не могут.

Цифровая электроника для начинающих _42.jpg
Цифровая электроника для начинающих _43.jpg

Современные конденсаторы, в принципе, работают по такому же принципу, только слои, разделенные изолятором, скручены и помещены в цилиндр. Емкость современного конденсатора гораздо больше, чем у старинных “банок”.

Соберем простую схему:

Цифровая электроника для начинающих _44.jpg

Испытать ее просто. Нажимаем кнопку “1” и держим ее некоторое время - конденсатор заряжается до напряжения, равного напряжению батареи. Затем отпускаем кнопку, конденсатор больше не соединен с батареей. Нажимаем кнопку “2” - и видим, что светодиод горит, хотя по сути, схема от батареи уже отключена. Светодиод горит за счет заряда, накопленного в конденсаторе. Разумеется, довольно-таки быстро он погаснет. Чем больше емкость конденсатора, тем дольше будет гореть светодиод. От электролитического конденсатора емкостью 10000мкф светодиод может гореть несколько секунд. Если же взять, конденсатор еще большей емкости, например так называемый ионистор, то светодиод может гореть до получаса. Бывают батареи ионисторов столь большой емкости, что от них может несколько километров ехать троллейбус.

Кстати, конденсаторы можно соединять параллельно, при этом их емкость суммируется. Это может пригодиться, если в наличии нет нужного конденсатора: его можно собрать из нескольких меньшей емкости.

Самостоятельная работа: испытать в схеме конденсаторы разной емкости, проверить как влияет емкость на время свечения светодиода. Также можно испытать параллельное соединение конденсаторов.

1.7 Микросхема NE555

Следующей, и весьма полезной для радиолюбителя микросхемой, является таймер NE555. Она была создана еще в 1971, но до сих пор актуальна - с помощью NE555 можно создавать различные генераторы сигналов. Это может пригодиться в разных схемах, от мигания светодиодом, до трансформатора Тесла.

Сама микросхема и нумерация ее выводов выглядят так:

Цифровая электроника для начинающих _45.jpg

Рассмотрим простую схему: мигающий светодиод.

Цифровая электроника для начинающих _46.jpg

Схема весьма проста. Частота задается деталями R1, R2 и С1, и определяется по формуле:

Цифровая электроника для начинающих _47.jpg

Частота, как мы знаем, измеряется в Герцах, 1Гц это одно колебание в секунду. NE555, R1, R2 и C1 создают генератор нужной частоты, справа мы видим уже знакомый нам светодиод с ограничивающим ток резистором.

Если схема собрана правильно, то мы увидим мигание светодиода. Если заменить резистор R1 на переменный, то частоту мигания можно будет изменять.

Немного усложнив схему, можно получить диммер - прибор, способный изменять яркость светодиода от нуля до максимума.

Цифровая электроника для начинающих _48.jpg

Такую схему можно использовать в качестве регулируемого ночника.

Как несложно догадаться, с помощью NE555 несложно воспроизвести и звук - нужно лишь изменить номиналы элементов, чтобы получить более высокую частоту, и поставить динамик вместо светодиода.

Цифровая электроника для начинающих _49.jpg

Здесь вместо светодиода и резистора подключен динамик с конденсатором.

Существует большое разнообразие схем с применением NE555. Например, подключив 2 микросхемы, можно получить “полицейскую сирену”:

Цифровая электроника для начинающих _50.jpg

Еще одна несложная схема - сигнализация, которая подаст звуковой сигнал при обрыве провода:

Цифровая электроника для начинающих _51.jpg

Аналогично, с применением NE555 есть схемы датчика протечки воды, ультразвукового отпугивателя собак, автоматического включения освещения с фоторезистором, и многое другое. Есть даже книга “Радиолюбительские схемы на ИС типа 555”, скачать ее можно в Интернете.

Самостоятельная работа: используя динамик, переменный резистор и NE555, собрать звуковой генератор, подобрав параметры так чтобы диапазон частот попадал в интервал 0-15КГц. С этим генератором легко проверить, насколько высокие звуки может слышать человек. Этот опыт можно провести с друзьями или одноклассниками - у каждого человека порог слышимости различный, более того, он меняется с возрастом.

1.8 Полевые и биполярные транзисторы

В предыдущей главе описывалась схема ночника, в которой яркость светодиода регулировалась от нуля до максимума. Но что делать, если мы захотим подключить целую светодиодную ленту чтобы осветить всю комнату? Включить ее напрямую к выводу микросхемы мы не можем, потребляемый ток слишком велик. На помощь придет полевой транзистор.

Цифровая электроника для начинающих _52.jpg

Схема подключения выводов транзистора показана на рисунке.

Цифровая электроника для начинающих _53.jpg

Упрощенно говоря, полевой транзистор - это электронный ключ, способный с помощью небольшого входного напряжения, управлять гораздо более мощной нагрузкой. Это как раз то, что нужно в нашей схеме.

Собрав схему, как показано на рисунке, мы можем подключить светодиодную ленту и изменять ее яркость вращением переменного резистора.

Кстати, как же в действительности изменяется яркость свечения? Здесь применяется так называемая широтно-импульсная модуляция (ШИМ). В ней меняется не яркость светодиода, а продолжительность периодов его свечения: