Изменить стиль страницы

* * *

В 1960 году К. И. Баувками опубликовал каталог всех простых квадрируемых прямоугольников (то есть квадрируемых прямоугольников, не содержащих квадрируемых прямоугольников меньших размеров) до 15-го порядка включительно. С помощью компьютера Баувкамп и его сотрудники получили следующие результаты:

Порядок прямоугольников 9 10 11 12 13 14 15

несовершенных 1 0 0 5 33 104 283

совершенных 2 6 22 67 213 744 2609

Несовершенными простыми квадрируемыми прямоугольниками здесь названы такие, которые содержат по крайней мере два одинаковых квадрата; совершенными — такие прямоугольники, в разбиение которых входят только неповторяющиеся квадраты. Общее число простых квадрируемых прямоугольников до 15-го порядка включительно равно 4094. Интересно отметить, что все простые квадрируемые прямоугольники 10-го и 11-го порядков одновременно являются и совершенными. Единственный несовершенный простой прямоугольник 9-го порядка имеет формулу: [6, 4, 5], [3, 1], [6], [5, 1], [4]. Он обладает приятной симметрией и может служить превосходной задачей на разрезание для детей.

Несколько квадрируемых прямоугольников было опубликовано в сборниках головоломок С. Лойда и Г. Дьюдени, но ни один из этих прямоугольников не был ни простым, ни совершенным. Пример простого, но не совершенного квадрируемого квадрата 26-го порядка приведен в книгах Г. Штейнгауза и М. Крайчика. Один из читателей прислал мне фотографию красивого внутреннего дворика прямоугольной формы, выложенного из 19 квадратных бетонных блоков с двухдюймовыми прокладками из красного дерева.

Наименьший из опубликованных квадратов, являющийся одновременно и простым и совершенным, построил Р. Л. Брукс. Это квадрат 38-го порядка со стороной 4920. В 1959 году результат Брукса был улучшен Т. Г. Уиллкоксом, который нашел квадрат 37-го порядка со стороной 1947.

Естественно, возникает вопрос, можно ли рассечь куб на конечное число меньших кубов так, чтобы все они были различных размеров. Оказывается, нет. Изящное доказательство этого было дано «выдающимися математиками» из Тринити-колледжа[54] Ход доказательства примерно таков.

Представьте себе, что на столе перед вами стоит куб, разрезанный на кубики меньших размеров, причем среди кубиков нет двух одинаковых. Ясно, что нижняя грань куба представляет собой дрируемый квадрат. Среди элементарных квадратов, входящих в разбиение нижней грани, найдется наименьший. Нетрудно видеть, что наименьший квадрат не может прилегать к стороне большого квадрата, то есть к ребру нижней грани куба. Поэтому наименьший из кубов, опирающихся на крышку стола, — назовем его куб А — должны окружать другие кубы. Ни один из этих окружающих кубов не может быть меньше куба А, поэтому их грани образуют вокруг него забор, высота которого превышает высоту куба А.

Следовательно, на куб А может опираться лишь куб еще меньших размеров. На верхней грани куба А они порождают некий руемый квадрат. Среди элементарных квадратов, на которых разлагается верхняя грань куба А, найдется наименьший квадрат. Обозначим через В наименьший из кубов, опирающихся на верхнюю грань куба А.

В свою очередь среди кубов, опирающихся на верхнюю грань куба В, найдется наименьший куб С. Итак, мы получаем бесконечную последовательность все меньших и меньших кубов, напоминающую известное шуточное стихотворение Свифта о блохах, которых кусают еще меньшие блошки, и т. д. до бесконечности. Следовательно, куб нельзя рассечь на конечное число неповторяющихся кубов меньших размеров.

«Гранями» четырехмерного гиперкуба служат обычные трехмерные кубы. Если «гиперкубировать» гиперкуб, то есть рассечь его на неповторяющиеся меньшие гиперкубы той же размерности, то его грани должны стать «кубированными» кубами. Поскольку, как мы только что видели, куб нельзя разрезать на неповторяющиеся меньшие кубики, «гиперкубирование» четырехмерного куба невозможно. Отсюда следует, что пятимерный куб также нельзя разбить на меньшие пятимерные кубы различных размеров.

Продолжая по индукции, мы приходим к заключению, что аналогичный вывод остается в силе для гиперкубов любой размерности, большей двух.

Примером совершенного квадрируемого прямоугольника бесконечного порядка может служить прямоугольник, изображенный на рис. 128.[55]

Глава 33. МЕХАНИЧЕСКИЕ ГОЛОВОЛОМКИ

В отличие от занимательных задач, обычно решаемых с помощью карандаша и листка бумаги, механические головоломки требуют кое-какого специального «оборудования», реквизита и ловких рук.

Этим «оборудованием» могут быть и самые обыкновенные кусочки картона, и замысловатые конструкции из дерева и металла, повторить которые по плечу далеко не каждому мастеру. Среди тех механических головоломок, которые иногда продаются в магазине игрушек, встречаются чрезвычайно интересные с математической точки зрения. По этой причине некоторые любители математических развлечений их коллекционируют. Самая большая из известных мне коллекций собрана Лестером А. Граймзом, инженером по технике противопожарной безопасности из Нью-Рошелла, штат Нью-Йорк.

(Несколько менее обширная коллекция, в которой, однако, более полно представлены старинные игрушки XIX века и китайские головоломки, принадлежит Томасу Рэнсому из Белвилла, пров. Онтарио, Канада.) Коллекция Граймза насчитывает около 2000 разнообразнейших головоломок; среди них встречаются и подлинные шедевры и редкости. О головоломках из этой коллекции и пойдет в основном речь в этой главе.

История головоломок еще не написана. Тем не менее вряд ли можно сомневаться в том, что древнейшей из них является старинная китайская игра танграм, известная в Китае под названием чи-чао-тю (что означает «хитроумный узор из семи частей»). В течение вот уже нескольких тысячелетий эта игра служит любимым развлечением в странах Востока, а с начала XIX века она получила распространение и на Западе. Рассказывают, что Наполеон, находясь в изгнании на острове Св. Елены, часами занимался составлением картинок из элементов танграма. Название «танграм» (неизвестное в Китае), по-видимому, было придумано в середине ХIХ века каким-то английским или американским «игрушечных дел» мастером, чье имя, к сожалению, до нас не дошло.

Фигуркам, которые можно составить из семи элементов танграма, посвящено множество альбомов и книг.[56] Среди них следует упомянуть и небольшую книжку знаменитого американского составителя головоломок Сэма Лойда, высоко ценимую знатоками.

Время от времени появлялись и другие головоломки, похожие на танграм (так, древние греки и римляне развлекались тем, что складывали фигурки из «обломков» разрезанного на 14 частей прямоугольника; изобретение этой игры приписывают Архимеду), но пережить танграм не суждено было ни одной из них. Чтобы понять причину удивительного долголетия этой старинной китайской игры, достаточно определенным образом разрезать квадрат из плотного картона и испытать свое искусство в складывании уже известных и придумывании новых фигурок. Схема разрезания квадрата показана на рис. 173.

Математические головоломки и развлечения _173.jpg

Рис. 173 Китайский тантрам (сверху слева) и некоторые из фигурок, которые можно составить из семи его элементов — «танов».

Ту часть квадрата, которая имеет форму параллелограмма, следует окрасить в черный цвет с двух сторон, чтобы при желании ее можно было переворачивать на другую сторону. В каждой фигуре должны быть использованы все семь элементов танграма. Трудности, как правило, возникают лишь при составлении геометрических фигур. О том, какие изящные силуэты можно выложить из семи элементов танграма, вы можете судить по рис. 173.

вернуться

54

Brooks R. L., Smith С. А. В., Stone A. H., Tutte W. Т. The Dissection of Rectangles into Squares: Duke Mathematical Journal, 7, 1940, pp. 312–340.

вернуться

55

На русском языке имеются две книги о разрезании квадратов: Яглом И. М. Как разрезать квадрат? — М.: Наука, 1968 и Кордемский Б. А., Русалев Н. В. Удивительный квадрат. — М.: Гостехтеоретиздат, 1952.

вернуться

56

Много задач такого рода собрано в книге Я. И. Перельмана «Фигурки-головоломки из 7 кусочков» (Л. — М.: Радуга, 1927). См. также книгу Б. А. Кордемского и Н. В. Русалева, о которой говорится в предыдущем примечании.