Изменить стиль страницы

Изучив несколько примеров эквивалентности между ротором и статором, мы убедились, что обращение ротора не изменяет полных сторон прямоугольника и токов в статоре, но токи в роторе могут изменяться. Удовлетворительные доказательства этих утверждений были получены гораздо позднее.

Эквивалентность между ротором и статором имеет лишь косвенное отношение к явлению, открытому миссис Брукс, и ее следует рассматривать просто как еще одно свойство цепей, имеющих симметричные части. Для нас важность сделанного миссис Брукс открытия заключается в том, что оно подсказало нам мысль об исследовании таких цепей.

Теперь нас неотступно преследовал новый вопрос: каково наименьшее число общих элементов у совершенных прямоугольников, образующих пару ротор — статор? Прямоугольники на рис. 168 и 169 имеют семь общих элементов, из них три отвечают токам в роторе. Тот же ротор со статором, состоящим лишь из одного-единственного проводника А2А3, порождает два совершенных прямоугольника шестнадцатого порядка с четырьмя общими элементами. Возникла мысль: почему бы, используя статоры, состоящие только из одного проводника, не попытаться построить пару совершенных прямоугольников, имеющих лишь один общий элемент — тот, который соответствует статору? Теоретически никаких причин, которые бы препятствовали этому, не было. В то же время мы ясно сознавали, что если нам удастся построить пару таких прямоугольников, то мы смогли бы построить совершенный квадрат. Действительно, у роторов с вращательной симметрией третьего порядка, изучением которых мы занимались, статор, состоящий лишь из одного проводника, на схеме разбиения каждого прямоугольника на квадраты всегда изображается угловым элементом. Мы надеялись, что из двух совершенных прямоугольников с единственным общим угловым элементом нам удастся построить совершенный квадрат.

Идея его построения ясна из рис. 170.

Математические головоломки и развлечения _170.jpg

Рис. 170

Заштрихованные части означают совершенные прямоугольники; квадрат, в котором они перекрываются, соответствует их общему угловому элементу.

Мы приступили к вычислению пар ротор — статор. Роторы мы выбирали как можно более простые, отчасти из желания облегчить свой труд, отчасти в надежде получить совершенный квадрат с небольшими приведенными элементами. Но наши построения одно за другим терпели неудачу, и мы впали было в отчаяние. Неужели путь к решению преграждает еще какой-то теоретический барьер, который также придется исследовать?

Кому-то из нас пришло в голову, что причина неудач могла крыться в излишней простоте конструкции наших роторов и что более сложные роторы, возможно, будут лучше: оперировать придется с гораздо большими числами и возможность случайного совпадения уменьшится. В один прекрасный день, придя в колледж, Смит и Стоун засели за расчет сложной пары ротор — статор, не зная о том, что Брукс, находившийся в другой комнате, также занят вычислением другой такой пары. Когда несколько часов спустя Смит и Стоун ворвались к Бруксу с криком: «Мы нашли совершенный квадрат!», тот уже мог ответить: «Я тоже!»

Оба найденные квадрата были шестьдесят девятого порядка.

Брукс, продолжая экспериментировать над не слишком сложными роторами, сумел получить совершенный квадрат тридцать девятого порядка, соответствующий ротору на рис. 171.

Математические головоломки и развлечения _171.jpg

Рис. 171

Полное описание этого квадрата содержится в формуле: [2378, 1163, 1098], [65, 1033], [737, 491], [249, 242], [7, 235], [478, 259], [256], [324, 944], [219, 296], [1030, 829, 519, 697], [620], [341, 178], [163, 72 154], [201, 440, 157, 31], [126, 409], [283], [1231], [992, 140], [852].

В этой формуле каждая пара скобок соответствует одному из горизонтальных отрезков на схеме разбиения совершенного квадрата.

Горизонтальные отрезки берутся в том порядке, как они следуют по вертикали сверху вниз. Первым идет верхнее основание совершенного квадрата; его нижнее основание в перечислении горизонтальных отрезков не участвует. Числа в скобках означают длины сторон тех элементарных квадратов, чьи верхние основания принадлежат соответствующему горизонтальному отрезку; эти длины перечисляются по порядку, слева направо. Приведенная сторона совершенного квадрата равна сумме чисел, заключенных в первых скобках, то есть 4639.

Эти обозначения принадлежат К. И. Баувкампу. Он воспользовался ими при составлении своего списка простых квадрируемых прямоугольников до 13-го порядка включительно.

На этом по существу и заканчивается история о том, как была решена задача о построении совершенного квадрата. Правда, мы продолжали работать над нею и после того, как были получены первые положительные результаты. Дело в том, что все совершенные квадраты, полученные по методу ротора — статора, обладали некоторыми свойствами, которые мы считали их недостатками. Каждый из построенных нами квадратов содержал совершенный прямоугольник меньших размеров, то есть не был простым. Каждый из них имел внутри себя точку, которая принадлежала четырем элементарным квадратам одновременно, то есть была центром «креста», образованного сторонами этих квадратов. Наконец, каждый из построенных нами совершенных квадратов содержал элементарный квадрат, который, хотя и был отличен от четырех угловых элементарных квадратов, тем не менее делился диагональю большого квадрата пополам. Используя более тонкую теорию роторов, мы сумели построить совершенные квадраты, лишенные двух первых недостатков. И лишь несколькими годами позже с помощью метода, основанного на использовании симметрии совсем иного рода, я получил совершенный квадрат 69-го порядка, свободный от всех трех недостатков. Я не могу останавливаться здесь на изложении этой работы и вынужден отослать тех читателей, кого она заинтересует, к специальным статьям.

В истории совершенного квадрата следует назвать еще три эпизода, хотя каждый из них знаменует не подъем, а спад в развитии теории.

Начнем с того, что мы не прекращали работы по составлению каталога совершенных прямоугольников 13-го порядка. Однажды мы обнаружили, что два из найденных прямоугольников имеют одинаковую форму, хотя все элементы у них различны. Это позволило построить совершенный квадрат 28-го порядка (идея его построения ясна из рис. 165). Позднее мы нашли совершенный прямоугольник 13-го порядка, который в комбинации с совершенным прямоугольником 12-го порядка и одним элементарным квадратом позволил построить совершенный квадрат 26-го порядка. Если о качестве совершенного квадрата судить по малости его порядка, то эмпирический метод составления каталога совершенных треугольников доказал свое превосходство над нашим изящным теоретическим методом.

Эмпирический метод позволил добиться замечательных результатов и другим исследователям. Р. Спрэг ухитрился сложить из элементарных квадратов совершенный квадрат 55-го порядка. Это был первый из опубликованных совершенных квадратов (1939 год).

Позднее Т. Г. Уиллкокс, включивший в свой каталог не только простые, но и составные совершенные прямоугольники, нашел совершенный квадрат 24-го порядка (рис. 172).

Математические головоломки и развлечения _172.jpg

Рис. 172

Его формула имеет следующий вид: [55, 39, 81], [16, 9, 14], [4, 5], [3, 1], [20], [56, 18], [38], [30, 51], [64, 31, 29], [8, 43], [2, 35], [33]. Этот совершенный квадрат и поныне держит рекорд малости порядка.

В отличие от теоретического метода эмпирический подход до сих пор еще не позволил построить ни одного простого совершенного квадрата.

На тот случай, если кому-нибудь из читателей захочется самому повозиться с совершенными прямоугольниками, приведу две нерешенные задачи. Первая заключается в том, чтобы найти наименьший возможный порядок совершенного квадрата, вторая — в том, чтобы построить простой совершенный прямоугольник, горизонтальная сторона которого вдвое больше вертикальной.