Изменить стиль страницы

На рис. 162 рядом с совершенным прямоугольником показана его диаграмма—диаграмма Смита.

Математические головоломки и развлечения _162.jpg

Рис. 162

Каждому горизонтальному отрезку на схеме разбиения прямоугольника на квадраты сопоставлена точка, или «клемма», на диаграмме Смита. «Клемма» лежит на продолжении соответствующей ей горизонтальной линии за контур прямоугольника вправо. Так, любой из входящих в разбиение квадратов ограничен сверху и снизу двумя горизонтальными отрезками, на диаграмме Смита его изображением служит линия, или «проводник», соединяющая две точки, одна из которых является изображением верхней стороны квадрата, а другая — изображением его основания. Представим себе, что по каждому проводнику течет ток. Пусть сила тока численно равна длине стороны квадрата, условно изображенного на диаграмме Смита данным проводником.

Предположим, что ток идет в направлении от точки, соответствующей верхней стороне квадрата, к точке, сопоставленной основанию того же квадрата.

«Клеммы», отвечающие на диаграмме Смита верхней и нижней (горизонтальной) сторонам большого прямоугольника, удобнее всего назвать положительным и отрицательным полюсами получившейся электрической цепи.

К нашему удивлению выяснилось, что электрические токи, введенные по только что перечисленным правилам, ведут себя как «настоящие»: они подчиняются правилам Кирхгофа для токов в цепи, если считать сопротивление каждого проводника равным единице.

Первое правило Кирхгофа состоит в том, что алгебраическая сумма токов, входящих и выходящих из любого узла (из любой «клеммы»), кроме полюсов, равна нулю. Это означает, что сумма сторон квадратов, ограниченных снизу данным горизонтальным отрезком, равна сумме сторон квадратов, ограниченных тем же отрезком сверху, если этот отрезок не принадлежит ни одной из горизонтальных сторон большого прямоугольника. Второе правило Кирхгофа гласит: алгебраическая сумма падений напряжения для любого замкнутого контура равна нулю. Наша цепь собрана из проводников с единичным сопротивлением, поэтому второе правило Кирхгофа применительно к нашему случаю можно сформулировать иначе: алгебраическая сумма токов для любого замкнутого контура в цепи равна нулю. Это означает, что если на схеме разбиения совершенного прямоугольника на квадраты выбрать произвольный замкнутый маршрут, то, обойдя его и вернувшись в исходную точку, мы пройдем вверх и вниз одинаковые расстояния.

Полный ток, втекающий в цепь из положительного полюса и вытекающий из цепи в отрицательный полюс, равен, очевидно, длине горизонтальной стороны прямоугольника, а разность потенциалов между двумя полюсами — длине вертикальной стороны прямоугольника.

Для нас открытие такой электрической аналогии было важно в том отношении, что позволяло связать нашу задачу с хорошо разработанной теорией. С помощью методов, заимствованных из теории электрических цепей, мы смогли получить формулы для токов в общей диаграмме Смита и, следовательно, для длин сторон квадратов, на которые разбивается квадрируемый прямоугольник.

Главные результаты такого заимствования были сформулированы следующим образом: с каждой электрической цепью можно связать определенное число, характеризующее ее структуру и не зависящее от того, какая именно пара узлов выбрана в качестве полюсов.

Это число назвали сложностью цепи. Если единица длины для данного прямоугольника выбрана так, что длина его горизонтальной стороны численно равна сложности, то стороны составляющих его квадратов будут выражаться целыми числами. Кроме того, длина вертикальной стороны прямоугольника равна сложности другой цепи, которая получается из первой при слиянии обоих полюсов в одну точку.

Числа, задающие в такой системе единиц длины сторон прямоугольника и составляющих его квадратов, назвали «полными» длинами сторон и «полными» элементами прямоугольника соответственно. У некоторых прямоугольников полные элементы имеют общий множитель, больший единицы. Разделив в таком случае их на общий множитель, мы получим «приведенные» длины сторон и элементы. Именно эти приведенные стороны и элементы мы включали в каталог.

Из полученных результатов было ясно, что если два емых прямоугольника отвечают электрическим цепям одинаковой структуры, отличающимся лишь выбором полюсов, то полные горизонтальные стороны таких прямоугольников равны. Если же структура электрических цепей двух прямоугольников совпадает лишь после совмещения в каждом из них обоих полюсов в одну точку, то у таких двух прямоугольников равны полные вертикальные стороны. Эти два факта объясняют все случаи того «таинственного рекуррентного закона», с которым мы сталкивались ранее.

Открытие диаграммы Смита упростило процесс получения и классификации простых квадрируемых прямоугольников. Без особого труда мы перечислили все допустимые электрические цепи, состоящие из не более чем 11 проводников, и нашли все соответствующие им квадрируемые прямоугольники. Затем обнаружили, что совершенных прямоугольников ниже девятого порядка не существует и что имеется лишь два совершенных прямоугольника девятого порядка (см. рис. 159 и 162). Были найдены все совершенные прямоугольники десятого (их оказалось 6) и одиннадцатого (их было 22) порядков. Затем, уже не столь быстро, удалось еще больше расширить каталог и включить в него совершенные прямоугольники двенадцатого (их мы насчитали 67) и тринадцатого порядков.

Особенно приятно было вычислять совершенные прямоугольники, соответствующие цепям с высокой симметрией. Мы рассмотрели, например, цепь, образуемую ребрами проволочного куба с полюсами в двух его вершинах. Такая цепь не позволяет получить ни одного совершенного прямоугольника, однако если ее усложнить, включив в одну из граней куба диагональ, и расправить всю цепь, уложив ее на плоскость, то получится диаграмма Смита, изображенная на рис. 163.

Математические головоломки и развлечения _163.jpg

Рис. 163

Ей соответствует совершенный прямоугольник, показанный на рис. 164.

Математические головоломки и развлечения _164.jpg

Рис. 164

Этот прямоугольник особенно интересен тем, что его приведенные элементы необычно малы для тринадцатого порядка. Общий множитель полных элементов равен 6. Бруксу этот прямоугольник так понравился, что он решил сделать из него головоломку и разрезал на отдельные квадраты, которые нужно было складывать снова в прямоугольник.

Именно на этом этапе исследования мать Брукса и сделала открытие, которое послужило ключом к решению всей задачи. Она долго билась над разгадкой придуманной Бруксом головоломки, и в конце концов ей удалось сложить квадраты так, что они образовали прямоугольник. Но это был совсем не тот квадрируемый прямоугольник, который разрезал Брукс! Брукс поспешил вернуться в Кембридж, чтобы сообщить о существовании двух различных совершенных прямоугольников с одинаковыми приведенными сторонами и одинаковыми приведенными элементами. Перед нами снова была необъяснимая рекуррентная последовательность, да еще какая! «Выдающиеся математики» из Тринити-колледжа собрались на внеочередное заседание.

Нам и раньше приходил в голову вопрос, могут ли различные совершенные прямоугольники иметь одинаковую форму, и хотелось получить два таких прямоугольника, не имеющих общих приведенных элементов, чтобы таким образом построить совершенный квадрат. Идея построения ясна из рис. 165: две заштрихованные области означают два совершенных прямоугольника; добавив к ним два не равных между собой квадрата, мы могли бы получить большой совершенный квадрат. Но прямоугольники одинаковой формы до того времени не появились в нашем каталоге, и ничего не оставалось, как высказать сомнение в возможности их существования.