Изменить стиль страницы
Математические головоломки и развлечения _127.jpg

Рис. 127 Вершины тех же «золотых» прямоугольников, что и на рис. 126, совпадают с центрами граней додекаэдра.

Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники (рис. 128).

Математические головоломки и развлечения _128.jpg

Рис. 128 Логарифмическая спираль, образованная «вращающимися квадратами».

(Тем самым будет построен пример совершенного квадрируемого прямоугольника бесконечного порядка. Подробно о квадрируемых прямоугольниках рассказывается в главе 32.) Точки, делящие стороны прямоугольников в среднем и крайнем отношении, лежат на логарифмической спирали, закручивающейся внутрь. Полюс спирали лежит на пересечении пунктирных диагоналей. Разумеется, «вращающиеся квадраты», как их принято называть, могут не только закручивать, но и раскручивать спираль. Для этого лишь требуется строить не уменьшающиеся, а все увеличивающиеся квадраты.

Логарифмическая спираль возникает и во многих других геометрических построениях, связанных с числом φ. Один из изящных способов вычерчивания логарифмической спирали основан на использовании равнобедренного треугольника, стороны которого находятся в золотом отношении к основанию (рис. 129).

Математические головоломки и развлечения _129.jpg

Рис. 129 Логарифмическая спираль, образованная «вращающимися треугольниками».

Углы при основании такого треугольника равны 72°, что вдвое больше угла при вершине, равного 36°. Именно из таких золотых треугольников построена пентаграмма. Точка пересечения биссектрисы угла при основании с противолежащей стороной делит эту сторону в среднем и крайнем отношении, при этом весь треугольник разбивается на два меньших треугольника, один из которых подобен исходному. В свою очередь этот треугольник также можно разбить на два еще меньших треугольника, проведя в нем биссектрису угла при основании, и т. д. Продолжая неограниченно этот процесс, мы получим бесконечную последовательность вращающихся треугольников, чьи вершины, так же как и вершины вращающихся квадратов, описывают логарифмическую спираль. Полюс этой спирали лежит на пересечении двух медиан, проведенных пунктиром.

Логарифмическая спираль — единственный тип спирали, не меняющей своей формы при увеличении размеров. Это свойство объясняет, почему логарифмическая спираль так часто встречается в природе. Например, по мере роста моллюска Nautilus раковина его, разделенная внутренними перегородками, увеличивается в своих размерах, закручиваясь по логарифмической спирали. При этом домик его не меняет формы: если центральную часть раковины посмотреть под микроскопом, мы увидим в точности такую же спираль, какая получилась бы, если бы раковина выросла до размеров галактики и мы разглядывали бы ее с большого расстояния.

Логарифмическая спираль тесно связана с числами Фибоначчи (1, 1, 2, 3, 5, 8, 13, 21, 34…; каждое последующее число, начиная с третьего, равно сумме двух предыдущих). Числа Фибоначчи часто встречаются в живой природе. Обычно в качестве примера приводят расположение листьев на черенке, лепестков некоторых цветков и семян в плодах. И здесь дело не обходится без числа φ, поскольку отношение двух последовательных членов ряда Фибоначчи тем ближе к числу φ, чем дальше мы продвинемся от начала ряда.

Так, 5/3 уже дает хорошее приближение к φ (прямоугольник с отношением сторон 5:3 трудно отличить от золотого прямоугольника), еще лучшее приближение дает 8/5, но его превосходит отношение 21/13, равное 1,615. Это свойство присуще не только числам Фибоначчи.

Начав с любых двух чисел и построив аддитивный ряд, в котором каждый член равен сумме двух предыдущих (например, ряд 7, 2, 9, 11, 20…), мы обнаружили, что отношение двух последовательных членов такого ряда также стремится к числу φ: чем дальше мы будем продвигаться от начала ряда, тем лучше будет приближение.

Это нетрудно понять, если воспользоваться вращающимися квадратами. Начнем с двух небольших квадратов любых размеров, например с квадратов А и В на рис. 130.

Математические головоломки и развлечения _130.jpg

Рис. 130 Квадраты, показывающие, что отношение последующего члена любого аддитивного ряда к предыдущему стремится к числу φ.

Сторона квадрата С равна сумме сторон квадратов А и В; сторона квадрата D равна сумме сторон квадратов В и С; сторона квадрата Е — сумме сторон квадратов С и D и т. д. Независимо от длин сторон двух первых квадратов вращающиеся квадраты образуют прямоугольник, который все меньше и меньше отличается от золотого.

Тесную связь между числом φ и числами Фибоначчи наглядно демонстрирует классический геометрический парадокс. Если на бумаге в клеточку начертить квадрат 8 х 8 и разрезать его на 4 части так, как показано на рис. 131, то из этих частей можно составить прямоугольник, площадь которого равна 65 единичным клеткам, а не 64, как у исходного квадрата.

Математические головоломки и развлечения _131.jpg

Рис. 131 Парадокс, основанный на свойствах произвольного аддитивного ряда.

Парадокс объясняется просто: части квадрата неплотно примыкают друг к другу вдоль диагонали и между ними остается узкий зазор. Его площадь равна «лишней» клетке. Заметим, что длины сторон трапеций и треугольников, на которые разрезали квадрат, выражаются числами Фибоначчи. На самом деле парадокс будет возникать и в том случае, если квадрат разрезан на трапеции и треугольники, длины которых выражаются членами любого аддитивного ряда, хотя при этом в одних случаях построенный из частей квадрата прямоугольник будет иметь бблыную, а в других — меньшую площадь по сравнению с квадратом в зависимости от того, как примыкают части вдоль диагонали: есть ли между ними зазор или они перекрываются. Это обстоятельство связано с тем, что отношение последующего члена аддитивного ряда к предыдущему то превосходит φ, то становится меньше этого числа.

Площадь прямоугольника, составленного из частей разрезанного квадрата, в точности совпадает с площадью квадрата лишь в одном случае: если длины сторон трапеций и треугольников взяты из членов аддитивного ряда 1, φ, φ+1, 2φ+1, 3φ + 2… (другой — «мультипликативный» — способ записи того же ряда выглядит так: 1, φ, φ2, φ3, φ4….). Это единственный аддитивный ряд, в котором отношение любых двух последовательных членов постоянно (и, конечно, равно φ). Это тот самый «золотой» ряд, которым тщетно стремятся стать все аддитивные ряды.

Обширная литература, посвященная числу φ и связанным с ним вопросам, не менее эксцентрична, чем литература о квадратуре круга, так или иначе затрагивающая свойства другого иррационального числа — π. [Добавим несколько замечаний, взятых из книги Н. von Baravalle «Geometrie als Sprache der Formen».

Связь φ с числом Фибоначчи иллюстрируется лучше всего таким образом. Если взять разложение 1/φ в цепную дробь

Математические головоломки и развлечения _131.jpg_0

и построить «подходящие дроби», откидывая «хвосты», то можно получить ряд чисел: