Изменить стиль страницы

Несомненно, генетика открывала новые возможности в выборе признаков, позволяла предсказать, какие из них в каких скрещиваниях проявятся, давала методы увеличения изменчивости, расширяя возможности поиска нужных комбинаций признаков, и, тем самым, увеличивала производительность работы селекционеров. Но, в сущности, работа селекционера оставалась прежней — поиск единичных желательных особей. Лишь много позже после описываемых здесь событий, с разработкой способов создания мутантных линий, методов анализа комбинационной способности, подходов к оценке и отбору особей по совокупности признаков (а у животных еще и по родословным) и т. п., генетические методы стали глубже внедряться в селекционный процесс, а создание за последние годы генетически модифицированных растений показало, что генетика начала вносить существенный вклад в производство принципиально новых сортов и форм.

Так что здесь мы видим зёрна того негативизма Т. Д. Лысенко в отношении генетики, которое позже переросло в фактическое её отрицание им как важной науки. Ориентация Т. Д. Лысенко на быстрый практический результат — как единственный критерий успешности работы — и отстранение от генетических исследований, в то время ещё не приносящих немедленного успеха, показывает сколь осторожно следует относиться к философским концепциям в науке.

Научные гипотезы. Научные гипотезы — это двигатель науки, вне зависимости от того, оказываются ли потом эти гипотезы верными, частично верными или вовсе неверными. Например, Ж. Ламарк и А. Вейсман выдвинули противоположные, несовместимые друг с другом гипотезы: один, в начале XIX века, — о наследовании приобретённых признаков, а другой, в конце XIX века, — о ненаследовании таких признаков, и обе эти гипотезы сильнейшим образом повлияли на развитие биологического знания. То же самое было в генетике — как в пору ее становления, так и позже. В 1906 г. Р. Локк высказал ряд предположений об организации генов, в т. ч. об их линейном расположении в хромосомах, рекомбинации и взаимодействиях, обеспечивающих промежуточное наследование некоторых признаков (цит. по: Мёллер 1934, стр. 20–21). Эти гипотезы стимулировали дальнейшие исследования и, как показали затем работы Т. Моргана и Р. А. Фишера, оказались справедливыми. А. Вейсман высказал опровергнутую позже гипотезу о природе наследственности, но она также повлияла на умы современников и стимулировала проведение важных экспериментов. Н. К. Кольцов предложил схему строения хромосомы как большой белковой молекулы; и хотя дальнейшие открытия опровергли ее, она также заронила важные мысли в умы ученых.

Гипотеза Т. Д. Лысенко о ведущей роли среды в развитии признаков и важности всех клеточных структур в реализации наследственной информации повлияла на биологические исследования, и это подтверждается высказываниями ведущих генетиков в те годы (см. следующую главу).

Пути решения практических задач сельского хозяйства, которые предлагала в 1930-40-е годы молодая в ту пору наука генетика и которые не принимал всерьёз Т. Д. Лысенко, не учитывали многообразия среды, а были основаны лишь на модельных экспериментах, в которых окружающая среда теоретически представлялась в виде случайной переменной, не подразделенной на конкретные факторы. Предлагаемые советскими генетиками методы повышения продуктивности сельскохозяйственных растений и животных и их устойчивости к заболеваниям и неблагоприятным условиям среды в то время нередко игнорировали опыт и знания селекционеров, семеноводов, биологов-практиков и расходились с их представлениями о путях достижения селекционного успеха. Недаром Н. П. Кренке говорил: «… я считаю, что генетики не должны обещать ни животноводству, ни растениеводству, ни общей биологии, что они в будущем одни сумеют разрешить все вопросы формообразования современными методами факториальной генетики. В организме существуют феногенетические закономерности; они трудны, они труднее генетических, ибо не разрешимы только комбинационным методом, лежащим в основе факториально-генетических исследований» (Спорные вопросы. 1937, стр. 306; курсив мой — Л. Ж.).

Гипотеза Т. Д. Лысенко о важности всех структур клетки, а не только хромосом клеточного ядра, и о влиянии факторов внешней среды на процессы реализации наследственной информации были основаны только на его биологической интуиции, поскольку соответствующих генетических данных на то время практически не существовало. Но они были его философским предвидением. В настоящее время та самая генетика, которая в описываемые здесь времена делала еще робкие шаги, а теперь владеет мощным молекулярным инструментом познания и преобразования, подтверждает их (см. далее).

Хромосомы или вся клетка? Т. Д. Лысенко разделял философскую идею о взаимосвязи частей организма друг с другом и утверждал: «Наследственная основа не является каким-то особым саморазмножающимся веществом [хромосомой]. Наследственной основой является клетка, которая развивается, превращается в организм. В этой клетке равнозначимы разные органеллы, но нет ни одного кусочка, не подверженного развитию эволюции» (Лысенко 1937, стр. 71). Много позже генетик М. Е. Лобашёв (1967, стр. 520) фактически повторит это философское утверждение Т. Д. Лысенко в своем учебнике генетики: «Наследственность является свойством клетки как системы в процессе ее работы и деления».

Несомненно, «скелет» наследственности составлен генами, расположенными в хромосомах клеточного ядра, поведение которых в мейозе и определяет то распределение признаков в потомстве, которые наблюдали еще основоположники генетики. Сегодня мы знаем множество случаев нарушения первоначально сформулированных законов наследственности, которые учеными-генетиками считались незыблемыми во времена их дискуссии с Т. Д. Лысенко и агробиологами (см. Ostrer 1998). Среди этих «нарушений» и перемещение мобильных генетических элементов, и перенос генов между видами, и встраивание ДНК вируса в геном хозяина с дальнейшим его репликацией, и образование прионов — белков с «правильной» первичной структурой, но измененной трехмерной конфигурацией, что сопровождается нарушением их функций в метаболизме клетки, и многое другое.

Лишь значительно позже после описываемых здесь дискуссий между советскими генетиками и агробиологами Дж. Уотсон и Ф. Крик (в 1953 г.) предложили модель структуры ДНК. А последующие за этим открытия привнесли новое знание о роли внеядерных структур клетки, которые не могли быть известными в годы яростной полемики в 1920-1940-е годы. Было показано, что процессы реализации наследственной информации, хранящейся в ДНК, происходят в цитоплазме, т. е. клетка целиком вовлечена в этот процесс. Затем была открыта ДНК органелл (митохондрий и хлоропластов), находящихся в цитоплазме, и установлено, что метаболизм энергии в клетке, а опосредованно — и многие другие процессы обмена, контролируются внеядерными генами.

Неизвестный Лысенко i_021.jpg

В 1940-х годах Барбара Мак-Клинток открыла «прыгающие гены» на примере варьирующей окраски зёрен кукурузы. Однако её открытие сочли курьёзом и на долгие годы забыли об этом. Но со временем подобные мобильные гены обнаружили у многих организмов. Через сорок лет после своего открытия Барбара Мак-Клинток была удостоена Нобелевской премии (1983 г.).

Каждые десять-пятнадцать лет мы только и узнаём нечто совершенно новое, что меняет наши представления о геноме. Например, в 2001 г. был секвенирован геном человека и оказалось, что реальное число генов (т. е. функционирующая часть ДНК) в три-четыре раза меньше (около 25–30 тыс.), чем теоретически предполагалось до того. Такое разительное несовпадение фактов и еще недавно существовавшей теории говорило о том, что многих фундаментальных вещей в биологии и генетике мы себе еще даже и не представляли; в частности, мы не знаем, зачем нужна остальная, нефункциональная ДНК, и действительно ли она «нефункциональна».