Изменить стиль страницы

С управляемой термоядерной реакцией связаны надежды людей на получение неисчерпаемого источника энергии. Еще с помощью плазмы можно прямо, без всяких турбин, превращать тепловую энергию в электрическую. При этом сокращаются потери энергии: коэффициент полезного действия обычных тепловых электростанций сравнительно мал.

Пламя, даже от спички, — плазма. Таинственная шаровая молния — тоже. Но в общем на поверхности Земли в естественных, не лабораторных условиях плазмы немного.

Другое дело — в космосе. Во Вселенной 99 процентов вещества пребывает в состоянии плазмы.

В начале 60-х годов уже работали на орбитах первые космические корабли. По инициативе известного специалиста по космическим лучам С. Н. Вернова, впоследствии академика, на спутниках были подняты счетчики заряженных частиц, применяемые в ядерной физике. Проблемы всевозможных земных, лабораторных и космических плазм сплелись вместе. Время открывало перед молодыми физиками-атомщиками интереснейшие перспективы.

Первые же прямые наблюдения в космосе показали, что люди неверно представляли себе обстановку в нем. Считалось, что количество частиц должно равномерно убывать по мере удаления от Земли. Однако на расстояниях порядка тысячи километров от поверхности планеты и дальше их оказалось намного больше, чем ожидалось. Области максимальной плотности получили название радиационных поясов Земли (слово "радиация" в данном случае означает присутствие энергичных частиц; когда говорят "радиоактивное облучение", то имеют в виду и облучение потоком таких частиц).

Ясно было, что сила земного притяжения не может удерживать на таких расстояниях от Земли столько частиц.

Что же мешало этим частицам разлететься?

Современная физика, ищущая подходы к термоядерному синтезу, могла дать ответ раньше, чем прозвучал вопрос: эти заряженные частицы захвачены магнитным полем Земли. В самом деле, для того чтобы началась термоядерная реакция — слияние двух ядер тяжелого водорода в одно ядро гелия, требуется удержать ядра водорода в небольшой области пространства в течение достаточно длительного времени: двигаясь внутри этой области, они в конце концов встретятся и сольются. Удерживать ядра помогает магнитное поле, которое затрудняет, как известно, передвижение заряженных частил, в поперечном к нему направлении на значительные расстояния: попав в такое поле, частица как бы блуждает в нем и не может выйти или выходит, но спустя какое-то время. Длительность этих блужданий зависит от того, как поле распределено в пространстве — говорят, от "конфигурации магнитного поля" и еще от того, в какую его точку и с какой скоростью была запущена частица.

Еще в начале века, задолго до термоядерщиков, эти вопросы изучали астрофизики. Их интересовало, как ведут себя заряженные частицы космической плазмы. Движение каждой такой частицы представляет собой микроскопический электрический ток. Поэтому в космосе существуют магнитные поля и, кроме того, небесные тела, имеющие собственное магнитное поле, оказывают влияние на движение космической плазмы. К середине нашего века разработки на эту тему могли уже считаться самостоятельной наукой. Она и послужила фундаментом для начавшихся потом исследований чисто земных проблем — термоядерного синтеза и прямого преобразования энергии. В развитие этих направлений были вложены крупные средства, и в них стало работать большое число ученых. Теперь исследователи космоса, в свою очередь, могли пользоваться результатами земных разработок по интересующей их теме. Это было тем более кстати, что появились спутники и космические корабли и изучение космоса резко двинулось вперед.

Из астрофизики выделилась молодая наука космофизика, изучающая космос на основе прямых измерений в нем.

Ко времени открытия радиационных поясов Земли уже было хорошо известно, что магнитные поля некоторых конфигураций могут долгое время удерживать определенным образом запущенные в них частицы. Термоядерщикам, которым нужно, чтобы частицы не разлетались, интересно именно это свойство полей, и они называют их ловушками. Это название так укоренилось, что им пользуются и космофизики, хотя для них оно не совсем удачно. Космофизики изучают, как вообще взаимодействуют заряженные частицы и магнитные поля, и им следовало бы называть поля таких конфигураций как-нибудь иначе, "лабиринтами", что ли, подчеркивая, что частице не только трудно покинуть такое поле, но и войти в него снаружи, хотя некоторые частицы тем не менее входят и выходят (как уже говорилось, все дело в том, где находилась частица в начальный момент и какая У нее тогда была скорость).

Магнитное поле в области радиационных поясов Земли близко к дипольному, оно представляет собой именно такую ловушку. Как и всякая ловушка, слишком энергичную для себя частицу дипольное поле Земли удержать не сможет: она пройдет через него по какой-то плавной кривой. Пути же захваченных полем частиц выглядят совсем иначе. Это спирали со множеством витков, навитые на силовые линии магнитного поля (рис. 2). Движение каждой отдельно взятой частицы, захваченной дипольным магнитным полем Земли, идет по стандартному образцу. Если понаблюдать за частицей в течение некоторого довольно короткого времени, то можно заметить, что частица описала почти окружность — это один виток спирали. Проследив за ее движением дольше, мы увидим, что этот виток "качается" вдоль магнитной силовой линии, уходя на определенное расстояние от плоскости экватора, а затем возвращаясь к ней. Через несколько часов наблюдений станет ясно, что вся спираль постепенно поворачивается вокруг Земли.

Небесные сполохи и земные заботы doc2fb_image_02000007.jpg

Рис. 2. Движение заряженной частицы, захваченной дипольным магнитным полем

Если такая частица сталкивается с другой или попадает под влияние "посторонних" полей — электрических и магнитных, характер ее движения изменяется. Теперь она может оказаться на силовой линии, проходящей на другом расстоянии от Земли, или увеличить размах своих качаний вдоль силовой линии. Если качания становятся очень уж большими, частица может подойти слишком близко к Земле, войти в плотные слои атмосферы и потеряться в них. Поэтому в космической ловушке может находиться только та частица, которая в своих качаниях не слишком далеко уходит от плоскости экватора.

Представим себе теперь, что в ловушке находится не одна, а много частиц. Сталкиваясь, они заставляют друг друга уходить в атмосферу (специалист скажет: частицы высыпаются в атмосферу). В конце концов столкновения станут редкими, и оставшиеся частицы уже можно будет рассматривать как отдельные, независимые друг от друга. Они все окажутся сосредоточенными вблизи плоскости экватора и как бы поясом охватят Землю. Так была понята природа радиационных поясов — совокупности заряженных частиц, по существу не связанных друг с другом.

В 1959 году космофизик Т. Голд назвал область, в которой кружатся эти частицы, магнитосферой.

Прошло всего несколько лет, и выяснилось, что все не так просто. Оказалось, что, кроме сравнительно небольшого количества частиц, составляющих радиационные пояса, в космосе есть еще множество частиц меньших энергий, радиационные пояса как бы погружены в пространство, заполненное ими. Эти малоэнергичные частицы уже нельзя было считать независящими друг от друга. Больше того, оказалось, что все процессы в ближнем космосе так или иначе связаны с этими частицами. Поведение их выглядело сложным и непонятным. Это они, вторгаясь в верхние слои атмосферы, вызывают самые эффектные формы полярных сияний: и резкие, четкие дуги, и цветной мятущийся "пожар небес". Частицы же радиационных поясов отвечают лишь за невзрачное свечение, которое иногда появляется вслед за особенно разбушевавшимися сияниями с экваториальной их стороны. На эти относительно малоэнергичные частицы — плазму околоземного пространства — постепенно сместилось основное внимание исследователей.