Изменить стиль страницы

Концепция Данжи и есть такая расшифровка явлений в околоземном пространстве.

Рецепт расшифровки несложен. Но это простота использования. Просто включить домашний холодильник, но так ли уж многие из включающих знают принцип его устройства? Вертит человек в руках кубик Рубика. Сделать его грани одноцветными — это одна задача, задача использования; сообразить, как он устроен, — другая; придумать такое — третья. Степень сложности разная. Мы скажем здесь об идейных корнях концепции Данжи. Они касаются одной из самых серьезных философских проблем современной физики — проблемы дуализма полей и частиц. Здесь ясности я обещать не могу. Но, остановившись на этом, мы вернемся потом к нашей "ясной" проблеме использования — расшифровке.

В 1873 году вышел в свет знаменитый труд Дж. Максвелла "Трактат по электричеству и магнетизму". Он обобщал все известные факты электродинамики. Наблюдения заряженных тел, токов, соображения о реальности электрических и магнитных полей, их изменения в пространстве и во времени — все это огромное и разнообразное Нечто свелось в Ничто — несколько простых по форме математических уравнений. Исследование этих уравнений открывало незамеченные еще свойства реальных явлений.

Из уравнений Максвелла следует, что в магнитном поле есть внутренние натяжения: его силовые линии ведут себя подобно натянутым резиновым нитям, они стремятся уменьшить свою длину, а пучок их — стать толще, расправиться. Правда, у пучка резинок есть какая-то естественная для него длина и толщина, у пучка магнитных силовых линий этого нет: он всегда стремится уменьшить свою длину и увеличить толщину. Если же магнитное поле не меняется со временем, то это потому только, что его силовые линии не дают друг другу вести себя, "как им хочется".

Наличие такой проблемы — дуализма полей и частиц — видно уже вот откуда. В школе всем показывали опыт: на два проводника с токами, текущими в одну сторону, действует сила, сближающая их. Если мы обратим внимание на магнитные поля, окружающие эту пару токов, то заметим, что при сближении проводников поле между ними становится слабее, а поле снаружи от них — сильнее. Так отчего сближаются проводники? Токи — движущиеся частицы — притягиваются или наружное магнитное поле, стремясь расправить пучки своих силовых линий (мы помним, что силовые линии надо проводить тем гуще, чем сильнее поле), сближает проводники? Желающие могут специально поломать голову над этим или обратиться к литературе по философии физики. Для нас же сейчас важно, что результат — сближение проводников, как его ни понимай, — оказывается всегда одним и тем же и совпадает с показанным нам в школе опытом.

Итак, силовые линии расталкиваются, когда их "слишком много", и стараются сократиться.

Мы уже говорили, что в идеально проводящей плазме магнитные силовые линии "вморожены" в вещество. Очевидно, об этом же самом свойстве можно сказать и так: вещество приклеено к силовым линиям магнитного поля. Еще мы говорили, что силовая линия всегда, когда есть возможность, стремится сократить свою длину. Вместе эти два утверждения означают, что в ситуациях, когда "вмороженная" силовая линия магнитного поля может сокращаться, она заставит вещество двигаться подобно стреле, которую толкает только что спущенная тетива лука.

Но мы уже отмечали, что абсолютная "вмороженность" силовых линий — это свойство идеальных проводников, реальные проводники если и похожи на идеальные, то лишь приближенно: силовые линии в них не наглухо скреплены с веществом. Такой реальный хороший проводник в общем движется вместе с силовыми линиями, но силовые линии постепенно смещаются относительно вещества.

Можно представить себе случай, когда, как в жизни, идеальность и слабая неидеальность работают друг на друга.

Тогда можно ожидать чудес.

Итак, раз!

Благодаря идеальности силовые линии движутся вместе с веществом, и может случиться так, что в некоторой области соприкоснутся семейства противоположно направленных силовых линий (рис. 4, а) Образовать, например, что-то вроде рукописной буквы X из магнитных силовых линий (в физике эта область соприкосновения так и называется: "точка икс"). Допустим, левая часть этой буквы — силовая линия, направленная вверх, правая — вниз, а сама буква — высокая и узкая.

Небесные сполохи и земные заботы doc2fb_image_02000009.jpg

Рис. 4. Пересоединение противоположно направленных магнитных силовых линий: а — пересоединение не началось, б — пересоединение происходит

Два!

Поскольку силовые линии неидеальны, они могут пересоединиться: объединятся между собой "куски" силовых линий, составляющих верхнюю часть буквы X, и отдельно "куски", составляющие ее нижнюю часть (рис. 4, б). Согласитесь, что для этого немного нужно: изменения могут даже не затрагивать весь поток, достаточно лишь, если в "талии" буквы X линии слегка сдвинутся относительно вещества. Теперь верхняя и нижняя половины буквы X будут как две оттянутые тетивы луков.

Три!

Линии-тетивы стремятся сократиться и (снова благодаря идеальности) выбросить плазму вверх и вниз. Когда это произойдет, мы получим дополнительный, обусловленный энергией магнитного поля, поток вещества из Х=точки.

Вот и все чудо.

То, что оно состоялось, видно из контрольной ситуации: возникло положение "раз", но левая и правая поло-вины X теперь образованы одинаково направленными силовыми линиями. Допустим, обе линии направлены вверх (рис. 5). Верхняя и нижняя половины X теперь состоят из противоположно направленных кусков силовых линий, и никакая неидеальность не поможет противоположно направленным кускам стать одной силовой линией: вдоль силовой линии магнитное поле всегда направлено в одну сторону. Обязано! Так что к пункту "два" в этом случае перейти нельзя.

Небесные сполохи и земные заботы doc2fb_image_0200000A.jpg

Рис. 5. Соприкосновение семейств одинаково направленных магнитных силовых линий. Пересоединение невозможно

Мы получаем четкое "правило отбора" ситуаций: если сблизились в потоке или как-нибудь еще семейства противоположно направленных линий, допустимо возникновение "тетивы" и появление дополнительного выброса вещества из Х-точки, если линии одинакового направления — ничего особенного не произойдет, пересоединение "запрещено".

Чтобы сработал пункт "два", необходимо нарушение "вмороженности" силовых линий: как в примере с клейстером — нельзя считать нити вклеенными, когда их разрезают и перевязывают по-другому. Как обеспечить выполнение пункта "два"? Исследователи видят разные пути. Одни представляют себе дело таким образом, что вблизи точки X подключается некоторый процесс (например, возникает неустойчивость), благодаря которому плазма вблизи самой Х-точки теряет свою идеальность. Другие исходят из изначальной неидеальности потока и стараются выявить такие сближающие потоки, чтобы эта изначальная неидеальность нужным образом проявила себя в области сближения. Конкретные представления о пересоединении разнообразны, как поэтические вариации на тему "соловей и роза". Но тема одна: это "раз — два — три".

Астрофизики, интересуясь движением космической плазмы, обсуждали возможности и последствия пересоединения магнитных силовых линий еще до появления гипотезы Данжи. И вот что замечательно. Все сказанное здесь об Х-точках — не упрощенный показ результатов строгого анализа и убедительных расчетов. Несколько приведенных здесь наглядных соображений об Х-точках — это практически все, чем располагал Данжи. И располагают сейчас его последователи. И можете располагать вы, читатель, если захотите расшифровать многообразие космических явлений. Проведем же такую расшифровку вместе.

Данжи предположил, что силовые линии собственного дипольного магнитного поля Земли, того поля, что создано глубинными токами внутри нашей планеты, пересоединяются в космосе с теми силовыми линиями, которые приносит с собой к Земле хороший проводник — плазма солнечного ветра. С этих пор название "Х-точка", отражающее всего лишь вид магнитного поля вблизи нее, вполне можно считать символическим: это то неизвестное, о котором космофизики ведут самые напряженные споры.