Изменить стиль страницы

Для подтверждения этой мысли Гильберт намагнитил железный шар и показал, что на маленькую магнитную стрелку он действует подобно Земле. Теперь физики называют такие лабораторные установки, моделирующие Землю с ее магнитным полем и окружающую часть ближнего космоса, "терреллами": в переводе с итальянского "террелла" значит "маленькая Земля", "Земелька". Магнитное поле однородно намагниченного шара, изображавшего в опытах Гильберта Землю, имеет характерный вид (рис. 1): каждая силовая линия — это дуга, которая выходит из поверхности шара в Южном полушарии, проходит над экватором и снова входит в шар, но уже в Северном полушарии. Над двумя точками поверхности шара силовые линии поднимаются вертикально (перпендикулярно поверхности, по радиусу) — это точки магнитных полюсов. Чтобы каждый раз не возвращаться к описанию такого магнитного поля, нам придется запомнить его название-термин: дипольное поле.

Магнитное поле, как известно теперь всем, создается электрическими токами. Токи, текущие в глубине нашей планеты, отвечают за ее дипольное магнитное поле.

Но токи на Земле текут не только в ее глубине. Из школьного курса физики мы помним, что микроскопические электрические токи есть внутри всех молекул и атомов, а в намагниченных телах эти токи ориентированы так, что действуют как общий макроскопический ток. Залежи природных магнитных материалов создают аномалии магнитного поля на Земле. Гильберт не зря придавал большое значение их существованию. Они действительно могут быть очень велики: например, в разных точках Курской магнитной аномалии угол магнитного склонения может отличаться на ±180°, а величина поля в два-три раза превосходить величину магнитного дипольного поля Земли. Однако аномальности чувствуются лишь в определенных районах и убывают по мере того, как мы отъезжаем от них. Общее диполь-ное магнитное поле Земли ощутимо по всей планете; Это фоновое поле по отношению к аномалиям. Аномалиями магнитного поля Земли интересуются в первую очередь геологи, ведущие по ним разведку полезных ископаемых, а дипольным, фоновым полем планеты — космофизики. И не только потому, что по мере удаления от поверхности Земли в космос магнитные поля аномалий перестают чувствоваться гораздо раньше, чем диполь-ное поле.

Вернемся еще раз к террелле Гильберта. Хотя магнитное поле однородно намагниченного шара и общее магнитное поле земного шара вне этих шаров одинаковые — дипольные, сами шары "сделаны" из разных материалов. И это принципиально важно. В самом деле, намагниченность постоянного магнита — любого куска магнитного материала — это отражение высокой упорядоченности составляющих его частиц: настолько высокой, что их "микротоки" действуют как один общий ток — настолько они согласованы между собой. Тепловое движение частиц расстраивает эту упорядоченность. Стоит постоянный магнит, в данном случае, терреллу, как следует нагреть или тем более расплавить, как исчезнет ее намагниченность, а значит, и магнитное поле. Но известно, что температура нарастает по мере углубления в недра нашей планеты. В больших пещерах всегда тепло: даже зимой здесь (если нет особых сквозняков) температура не бывает ниже 10–12 градусов. В шахтах — жарко. По современным представлениям, через один километр глубины температура увеличивается примерно на 33 градуса, а по косвенным, но внушающим доверие данным, внутри Земли находится расплавленное, жидкое, ядро. Почему же тогда Земля — большой магнит? И тем более почему Солнце — магнит? Все помнят "пейзажную" зарисовку в стихах Ломоносова:

Там огненны валы стремятся
И не находят берегов;
Там вихри пламенны крутятся,
Борющись множество веков;
Там камни, как вода, кипят,
Горящи там дожди шумят.

Какая уж тут, казалось бы, намагниченность! Но магнитные поля на Солнце есть. Есть общее магнитное поле, есть гигантские магнитные аномалии — темные пятна на Солнце. Мы и видим их как темные благодаря магнитному полю: оно здесь настолько велико, что сковывает свободное движение солнечного вещества (это вещество проводит электрический ток, а движение всякого проводника поперек магнитного поля затруднено), и в область солнечного пятна меньше поступает горячего, а следовательно, ярко светящегося вещества из глубин Солнца. И пятна эти появляются, движутся, исчезают и появляются вновь.

"Космос становится лабораторией, в которой мы заново открываем магнитное поле, узнаем о нем нечто новое и тем самым постигаем его роль во Вселенной", — сказал астрофизик Е. Паркер.

Вопрос, как меняется магнитное поле Земли, затрагивает эту собственную, почти еще не понятую людьми жизнь планеты как космического тела. И Земля продолжает жить этой жизнью.

Точные магнитные карты требуют обновления из-за изменений магнитного поля Земли каждые 5-10 лет. Но систематические наблюдения за магнитным полем люди ведут от силы лет 300. И все же есть возможность судить об изменениях его и в более далекие времена. Ученые заметили, что керамические изделия — кирпичи, различные сосуды и т. д. — заметно намагничены. В то же время необработанные глина и песок — практически немагнитные материалы. Оказывается, свою намагниченность керамика приобретает в печи во время обжига и намагничивает ее магнитное поле Земли. Приобретенная намагниченность сохраняется потом очень долго. Это свойство керамических изделий "запоминать" магнитное поле, существовавшее в момент их изготовления, очень полезно для ученых. Особенно надежно удается провести археомагнитные измерения, когда известно, как именно стоял сосуд или лежал кирпич в тот момент, когда производился обжиг. Так бывает, например, когда археологи при раскопках обнаруживают старую печь с невынутой керамикой.

О полях в более далекие времена узнают по аналогичной "магнитной памяти" некоторых геологических пород. Но при таких палеомагнитных измерениях точность определения магнитного поля намного ниже, поскольку за долгие геологические времена "запомнивший" кусок материала успел принять участие хотя и в медленных, но запутанных перемещениях и теперь уже трудно сказать, как именно он был ориентирован, когда "запоминал" магнитное поле.

Все эти прямые, археомагнитные, палеомагнитные данные говорят о том, что магнитный полюс движется, то есть меняются токи внутри нашей планеты, отвечающие за ее общее дипольное поле. Магнитный полюс Северного полушария примерно 570 миллионов лет назад находился возле экватора, потом постепенно смещался на север, пока не достиг своего нынешнего положения между северной оконечностью Гренландии и ближайшей к этой оконечности точкой берега Северной Америки. как уже говорилось, от северного географического полюса его отделяет примерно 1600 километров. И надо заметить, что прошлые положения магнитного полюса, определенные по геологическим образцам, взятым на территории Европы, отличаются от определенных по образцам из Америки. Эту разницу, а она весьма заметна, можно объяснить с точки зрения гипотезы о дрейфе континентов, согласно которой материки движутся друг относительно друга подобно плавающим льдинам. Палеомагнитные измерения заставляют многих ученых поддерживать эту гипотезу.

Перемещается магнитный полюс, и вместе с ним "гуляет" овал полярных сияний.

Во времена морских походов викингов (это примерно 700 год) сияния часто наблюдались над Норвегией и Данией, но в XIII веке это было уже не так. Автору "Королевского зерцала" не зря приходилось расспрашивать о них людей, "длительное время проживших в Гренландии": сияния в то время были часты именно над Гренландией. Ушли в XIII веке сияния от берегов Европы, но интерес к ним у скандинавов остался.

Любопытно отметить, что, когда вслед за появлением спутников пошла в рост молодая наука космофизика, печаталось множество оригинальных научных работ и историческими обзорами поначалу никто себя не утруждал. Первыми их начали делать скандинавы — сказалась, видимо, древняя викинговская любовь к обстоятельному всестороннему обдумыванию деталей "пожара небес". Недавно доктор Альв Эгеланд, профессор физики университета в Осло, до 1978 года — глава Норвежского комитета по космическим исследованиям, поднял исторические материалы по изучению полярных сияний в Скандинавских странах. Его данные я частично использовала в этой книге.