Изменить стиль страницы

Но и в части солнечного тепла, или, как сказал бы специалист, в части тепловых ресурсов, пустыни тоже бывают разные. В пустынях западнее и восточнее Аральского моря сумма температур, превышающих порог «плюс десять градусов», лежит в пределах 3500–4000 градусов. Километров на сто южнее сумма температур достигает уже 4500–5000, а еще через сотню-другую километров — 5000 градусов. На юго-западе Туркменской ССР есть районы с суммарными температурами, заметно превышающими 6500 градусов.

Вообще же границы районов с разными суммарными температурами нередко имеют довольно сложную конфигурацию, и бывает, что территории, расположенные не так уж далеко одна от другой, по термическим ресурсам различаются весьма заметно. На суммарные температуры влияют и такие природные факторы, как медленные изменения климата, изменение солнечной активности в соответствии с одиннадцатилетними циклами и, наконец, некоторые антропогенные процессы. Установлено, что интенсивное орошение может снижать суммарную температуру на несколько градусов. Это вполне понятно: там, где есть влага, происходит ее испарение, а всякое испарение сопровождается понижением температуры. Такое снижение неприятно, но неизбежно — без орошения районы с высокими суммарными температурами для сельскохозяйственного производства вообще бесполезны.

Точно промеренные и подсчитанные суммарные температуры не есть какие-то отвлеченные географические характеристики. Эти цифры строго ограничивают возможности выращивания тех или иных культур, и их никак не обойдешь даже при наличии всех других благоприятных факторов. Лучшим тонковолокнистым сортам хлопчатника нужен очень жаркий климат, нужны суммарные температуры не менее 4900 градусов. Температуры на несколько сот градусов ниже позволяют выращивать только скороспелые, менее ценные средневолокнистые сорта хлопчатника. А районы с температурами ниже 4000 градусов для хлопка вообще непригодны, хотя там могут с успехом выращиваться некоторые сорта винограда.

На орошаемых пустынных землях (правильнее было бы сказать, бывших пустынных землях) посевы хлопчатника чередуются с посевами кормовой культуры люцерны — такие севообороты улучшают почву, снижают ее засоленность и, кроме того, позволяют создавать комплексные хозяйства, где хлопководство сочетается с животноводством. Так вот и для люцерны далеко не безразлично количество солнечного тепла: при суммарных температурах 4900 градусов она растет очень быстро, и за лето можно сделать до семи укосов люцерны. А при температурах около 4000 градусов — только до четырех.

Пустыня как она есть i_038.png

В целом же нужно сказать, что все пустынные территории, которые удается оросить и превратить в плодородные поля, великолепно обеспечены солнечной энергией. И пусть не везде здесь может расти южанин хлопчатник, но зерновые культуры, фрукты, овощи, бахчевые, наконец, травы, идущие на корм скоту, получат столько жаркого солнца, что смогут давать по два, а некоторые и по три урожая в год, если будет достаточно воды.

Главное, что нужно растению, — это солнце, воздух, вода и, конечно, почва. Солнце дает энергию, необходимую для того, чтобы соединить имеющиеся химические элементы, собрать из них белки, жиры, углеводы. Вода входит в состав растительных клеток, выполняет транспортные функции, доставляя те или иные вещества на место стройки, туда, где идет синтез органических соединений, создаются архитектурные шедевры зеленого мира. Воздух дает растению углерод — важнейший химический элемент, необходимый для строительства растительной ткани.

Многие вещества, тоже совершенно необходимые для строительства живой материи, растение получает из почвы. Взять, к примеру, азот — обязательный элемент любой белковой молекулы, а также молекул нуклеиновых кислот. Он входит в важнейшие для всего живого молекулярные конструкции в заметных количествах, и, казалось бы, растения и животные не должны чувствовать в нем недостатка: азота очень много в воздухе, по объему примерно 80 процентов. Но извлекать его из воздуха растения не умеют, они получают его из почвы, так же как фосфор и калий, их тоже немало идет на строительство растительной ткани. А еще растение берет из почвы микроэлементы, такие, как медь, железо, марганец, серебро. Хотя они нужны растению в очень малых, просто-таки микроскопических количествах (за что и получили название микроэлементов), но без них растение развиваться не может.

Однако обязательно ли получать все это из почвы? Живут же морские растения, прикрепившись к сваям причалов или каменистым берегам. Они обходятся без земли…

Гидропоника — так назвали (от греческих слов «гидро» — вода и «поника» — работа) методы выращивания сельскохозяйственных культур без почвы, без земли. Ее заменили определенными химическими растворами, в которых в удобном виде содержатся все необходимые растению вещества. Гидропоника — дело непростое, особенно если применять ее в больших масштабах. Но есть у нее несколько достоинств первостепенной важности. Прежде всего она позволяет точно дозировать все потребляемые растением вещества, не растрачивать ценные питательные вещества на кормежку сорняков или иных паразитов. И не выбрасывать с трудом добытые удобрения, как это, к сожалению, неизбежно происходит сегодня, — заметная часть внесенных в почву химикатов вымывается дождями и уносится в реки и моря.

И видимо, одним из первых кандидатов для практического применения гидропоники могут быть некоторые пустыни. В окрестностях города Шевченко, который окружен в основном сильно засоленными почвами, уже несколько лет проводятся опыты по выращиванию овощей на гравии. Гидропонные плантации занимают участок площадью пять тысяч квадратных метров, то есть примерно с футбольное поле. Там же пробовали выращивать методами гидропоники зерновые культуры, используя их как добавку в корм скоту. Наконец, значительный интерес представляют эксперименты по выращиванию хлореллы — водоросли, которая содержит много питательных веществ, может оказаться хорошей кормовой добавкой и, ко всему, еще отличается большой скоростью образования биомассы. Хлореллу выращивают в установках, где вообще главное действующее лицо — солнечное освещение. И если исследования завершатся успешно, лучшего места, чем пустыня, для выращивания хлореллы не найти. И солнца хватает, и потребители кормов недалеко.

Наряду с различными отраслями сельского хозяйства на пустынные территории, богатые «солнечным сырьем», могут претендовать и другие отрасли. В том числе малая энергетика. И даже большая. Мы убедимся в этом, отправившись еще на одну экскурсию. На сей раз наш путь лежит в научный центр, где разрабатывается широкий круг проблем, связанных с использованием солнечного тепла и света.

Выехав из Ашхабада в направлении местечка Бекрава, примерно на восьмом километре шоссе издалека виден необычный дорожный знак — большой желтый круг с расходящимися во все стороны лучами. Если подъехать поближе и прочитать надпись внутри круга, обнаружится, что это не дорожный знак, а творение людей веселых и изобретательных — вывеска солидного научного учреждения. На ярко-желтом фоне четкими буквами написано название, подобного которому нигде больше не увидишь, — Институт солнечной энергии. Этот единственный в своем роде институт входит в состав Академии наук Туркменской ССР, в его тематике отражены практически все основные направления научных исследований, ставящих своей целью использовать огромное богатство, доставшееся нашим пустыням, — энергию солнечных лучей.

На первый взгляд может показаться, что никакие новые исследования в этой области не нужны. Потому что люди уже давно умеют превращать свет и тепло в электричество. Чтобы убедиться в этом, достаточно посмотреть, как отклоняется под действием падающего света стрелка фотоэкспонометра. Или взглянуть на прямоугольные ячеистые панели, которые разместились на площадке недалеко от входа в институт. Это солнечные батареи, они очень похожи на огромные крылья, которые вы не раз видели на снимках различных космических аппаратов. «Крылья» — панели фотоэлементов, их смело можно назвать солнечными электростанциями космических кораблей, так как они сами, без посредников превращают свет, который на них падает, в электрическую энергию. Ее хватает и на освещение космического дома, и на работу многочисленных бортовых агрегатов, научных приборов, средств радиосвязи, систем жизнеобеспечения.