Повторяем все операции предыдущего абзаца еще 11 раз, так что 6 верблюдов получат по две полугаллонные порции воды каждый, а 6 других получат по две полуторагаллонные порции. Однако при 10-м и 11-м повторении вместо того, чтобы возвращать 2 галлона в большую бочку, отдадим их любым двум верблюдам, которые уже получили по две полугаллонные порции. Теперь уже 8 верблюдов получили по 3 галлона, а 4 верблюда – по 1 галлону; кроме того, в большой бочке осталось 35 галлонов (407).
Наполним малую бочку из большой с помощью 4-галлонной меры и дадим 1/ 2галлона верблюду № 13. Переливаем 3 галлона из большой бочки в 4-галлонную меру (18).
Возвращаем все вино в большую бочку. Опустошаем малую бочку, перелив ее содержимое в три 10-галлонных кувшина, а оставшиеся 1/ 2галлона перельем в 2-галлонную меру. Вернем содержимое трех кувшинов в малую бочку и перельем 1 1/ 2галлона из 2-галлонной меры в кувшин № 1 (12).
Наполним 2-галлонную меру из 4-галлонной, оставляя 1 галлон в 4-галлонной мере. Наполним малую бочку из 2-галлонной меры и дадим оставшиеся 1/ 2галлона верблюду № 13. Дадим пяти верблюдам по 2 галлона каждому, после чего все верблюды будут напоены (13).
Наполним 2 пустых кувшина из малой бочки и перельем оставшиеся 1/ 2галлона в кувшин № 1. Вернем содержимое кувшинов № 2 и 3 в малую бочку (5).
Перельем 1 галлон из 4-галлонной меры в кувшин № 2. Нальем 6 галлонов вина в кувшин № 3 с помощью 2-галлонной и 4-галлонной мер. Выльем 1 галлон из кувшина № 2 в 4-галлонную меру и наполним эту меру вином из кувшина № 3. Выльем содержимое 4-галлонной меры в кувшин № 2. Перельем 2 галлона воды из малой бочки в кувшин № 2 (10).
Теперь каждый из 13 верблюдов получил по 3 галлона воды, один из 10-галлонных кувшинов содержит 3 галлона воды, второй – 3 галлона вина и третий – смесь из 3 галлонов воды и 3 галлонов вина. В большой бочке находится 25 1/ 2галлонов вина, а в малой – 18 галлонов воды. Общее число операций составляет 506.
[В одном из своих интервью Генри Э. Дьюдени упоминает о том, как С. Лойд в связи с этой задачей обращался к нему за помощью. Дело в том, что Лойд предложил своим читателям денежный приз за лучшее ее решение и хотел избежать выплаты, найдя собственное решение, превосходящее все им полученные. Дьюдени нашел решение в 521 ход. В дальнейшем он снизил число ходов до 506, так что Дьюдени сэкономил Лойду немалую сумму. – М. Г.]
109. Многие даже искушенные математики нередко впадают в ошибку, исходя из того, что имеются 24 отправные и 24 конечные точки. Они утверждают, что правильным ответом будет (24) 2= 576 способов. Однако они проглядели разветвляющиеся пути, которые дают 252 способа достигнуть центра С и столько же способов вернуться назад к граничным W.Поэтому правильным ответом будет (252) 2= 63 504 способа.
110. Если бы в сиамском аквариуме было столько рыб, сколько я получил различных ответов, то там разыгралась бы битва века!
Я склонен считать правильным следующее решение. Три маленькие рыбы отвлекают внимание каждой из трех больших рыб, а остальные 4 дьявольские рыбы в 3 мин уничтожают четвертую королевскую рыбу. Затем 5 маленьких рыб набрасываются на одну большую и убивают ее за 2 мин 24 с, пока остальные маленькие рыбы сражаются с другими большими.
Очевидно, что если бы каждой из оставшихся групп помогла еще одна рыба, они бы закончили свое дело за то же самое время, так что у каждой большой рыбы сил осталось бы ровно столько, чтобы привлекать внимание маленькой рыбы в течение 2 мин 24 с. Следовательно, если большую рыбу атакуют 7 маленьких рыб вместо одной, то им потребуется 1/7 этого времени, или 20 4/7 с.
Если распределить теперь силы маленьких рыб для атаки на оставшихся двух больших рыб (7 на одну и 6 на другую королевскую рыбу), то для уничтожения последней большой рыбы в конце 20 4/7 с потребуется усилие, с которым сможет справиться одна маленькая рыба. Но поскольку вместо одной маленькой рыбы. На последнюю королевскую рыбу набросятся все 13 дьявольских рыб, они справятся с ней за 713 этого времени, то есть за 153/91 с.
Складывая теперь все промежутки времени (3 мин, 2 мин 24 с, 204/7 с, 153/91 с), мы получим продолжительность всей битвы – 5 мин 462/13 с.
111. Согласно заданным условиям, одна монета с круглой дыркой стоит 15/11 бит, одна монета с квадратной дыркой стоит 16/11 бит и одна монета с треугольной дыркой стоит 17/11 бит. Щенка стоимостью в 11 бит можно, следовательно, купить за одну монету с квадратной дыркой и 7 монет с круглыми дырками.
112. Круг сыра делится на 2 части с помощью одного разреза, на 4 – с помощью второго, на 8 – с помощью третьего, на 15 – с помощью четвертого, на 26 – с помощью пятого и на 42 части – с помощью шестого разрезов.
[Эти числа равны максимальному количеству частей, порождаемых каждым последовательным разрезом выпуклого тела. С помощью этой последовательности нетрудно вывести следующее кубическое уравнение, выражающее максимальное число частей как функцию числа разрезов п: (п 3+5п)/6+ 1= число частей. – М. Г.]
113. Вероятность того, что ни один из шести человек не возьмет свою собственную шляпу, равна 265/720. [Это получается следующим образом. Число способов, которыми можно выбрать пшляп случайным образом так, чтобы ни один человек не выбрал собственной шляпы, равно n!×(1–1/1! + 1/2! + 1/3! + 1/4! -…+– 1/ n!).
Поделив это выражение на п!(общее число способов, которыми можно выбрать пшляп), мы и получим ответ. С ростом пответ стремится к пределу, равному 1/е, давая тем самым забавный эмпирический способ определения трансцендентного числа е.Анализ этой задачи и подобных вопросов дается в книге Ball R. Mathematical Recreations, p. 46. – M. Г.]
114. На рисунке показан единственный правильный способ расположить 8 ворон на снопах пшеницы так, чтобы никакие две птицы не оказались в одном ряду или на одной диагонали. Кроме того, сторож не сможет найти точку, с которой ему удалось бы прицелиться сразу в трех ворон.
115. «Любопытный трюк» состоит в том, что два выступа в кромке средней дыры не видны за головой осужденного! На рисунке показано, как именно следует разрезать доску.
116. Батчер Бой стоил 264 доллара и был продан за 295,68 доллара, что дало прибыль в 12 %. Вторая лошадь стоила 220 долларов и была продана за 198 долларов, так что потери составили 10 %. Общая стоимость двух лошадей составляла 484 доллара, а проданы они были за 493,68 доллара; при этом общая прибыль составила 2 %.
117. Ножницы можно освободить, продвигая конец с петлей назад вдоль двойной веревки: сначала через левое кольцо, затем через правое, далее снова через левое, а потом опять через правое. Теперь перекиньте петлю через все ножницы, и они окажутся свободными, если только в процессе работы вы не запутаете веревку, перекрутив ее неудачным образом.
118. [Независимо от способа передвижения обезьяны (быстро, медленно или прыжками) груз и обезьяна всегда будут находиться на одном уровне. Обезьяна не сможет оказаться выше или ниже груза, даже если она, отпустив веревку, станет падать вниз, а затем снова за нее уцепится.
Льюис Кэрролл ставит эту задачу в своем «Дневнике»; ее обсуждению посвящена обширная литература. – М. Г.]