В начале 20 в. расширение масштабов применения железобетонных и стальных конструкций, появление сложных машин и механизмов обусловили быстрое развитие науки о С. м. Были опубликованы классические учебники С. П. Тимошенко по С. м. и строительной механике, труды А. Н. Динника по продольному изгибу, устойчивости сжатых стержней и др.
Дальнейшему совершенствованию методов С. м. способствовало создание в СССР ряда научно-исследовательских учреждений для проведения исследований в области расчёта конструкций. Появились новые разделы С. м. Большое влияние на развитие С. м. оказали труды Н. М. Беляева в области пластических деформаций, А. А. Ильюшина по теории пластичности, Ю. Н. Работнова и А. Р. Ржаницына по теории ползучести. Значительным вкладом в науку о С. м. явилась созданная В. З. Власовым теория расчёта тонкостенных стержней и оболочек. Важные фундаментальные исследования выполнены советскими учёными Н. И. Безуховым, В. В. Болотиным, А. Ф. Смирновым, В. И. Феодосьевым и др.
Современные тенденции развития науки о С. м. Одна из важнейших задач С. м. — установление причин и характера разрушения материалов, требующее всестороннего теоретического и экспериментального изучения процессов, происходящих в микрообъёмах тела, в частности характера возникновения и развития трещин. Установлено существование таких (предельных) напряжений, превышение которых влечёт за собой прогрессирующий рост уже появившихся трещин, приводящий в конечном счёте к разрушению тела. Если напряжения меньше указанного предела, то тело, имеющее трещины, находится в состоянии трещиноустойчивости. В некоторых случаях под действием нагрузки разрушения в микроэлементах распространяются на весь объём тела (особенно при высоких температурах). Исследование этих вопросов требует создания нового важного раздела механики деформируемого тела — механики разрушения. Ещё недостаточно изучен ряд вопросов т. н. усталостной прочности материалов, в частности прочность элементов (деталей) машин при их длительном циклическом нагружении.
В связи с появлением новых конструкционных материалов (например, пластмасс, лёгких сплавов) возникла необходимость создания теорий прочности, отражающих специфические свойства этих материалов. Современные технологические процессы (например, с применением высоких давлений) позволяют получать материалы с весьма высокой прочностью, поведение которых под нагрузкой недостаточно изучено и требует целенаправленных исследований.
Лит.: Тимошенко С. П., История науки о сопротивлении материалов с краткими сведениями из истории теории упругости и теории сооружений, М., 1957; Работнов Ю. Н., Сопротивление материалов, М.. 1962; Феодосьев В. И., Сопротивление материалов, М., 1974; Сопротивление материалов, М., 1975.
Под редакцией А. Ф. Смирнова.
Сопротивление омическое
Сопротивле'ние оми'ческое, прежнее название предельного значения сопротивления активного при w ® 0, где w — частота переменного тока. Термином «С. о.» подчёркивается выполнение Ома закона, т. е. наличие линейной зависимости между током и напряжением.
Сопротивление реактивное
Сопротивле'ние реакти'вное электрическое, величина, характеризующая сопротивление, оказываемое переменному току электрической ёмкостью и индуктивностью цепи (её участка); измеряется в омах. В случае синусоидального тока при последовательном соединении индуктивного и ёмкостного элементов цепи С. р. выражается в виде разности сопротивления индуктивного и сопротивления ёмкостного:
Сопротивление электрическое
Сопротивле'ние электри'ческое, см. Электрическое сопротивление.
Сопротивление электрической цепи
Сопротивле'ние электри'ческой цепи, полное электрическое сопротивление, величина, характеризующая сопротивление цепи электрическому току; измеряется в омах. В случае синусоидального переменного тока С. э. ц. выражается отношением амплитуды напряжения на зажимах цепи к амплитуде тока в ней и равно


Сопротивления электрического измерители
Сопротивле'ния электри'ческого измери'тели, электро- и радиоизмерительные приборы для измерения активного сопротивления электрической цепи (см. Омметр, Мегомметр, Мост измерительный, Заземления измеритель).
Сопряжение контуров
Сопряже'ние ко'нтуров, обеспечение согласованного изменения резонансных частот колебательных контуров какого-либо устройства (например, супергетеродинного радиоприёмника), перестраиваемых посредством одной ручки настройки. При настройке супергетеродинного приёмника на определённый сигнал резонансная частота контуров входной цепи и усилителя радиочастоты fo устанавливается равной частоте принимаемого радиосигнала fc, а резонансная частота контура гетеродина fr — такой, чтобы промежуточная частота (равная обычно разности частот fc и fr) совпадала с резонансной частотой контуров усилителя промежуточной частоты. Для С. к. преимущественно используют метод, при котором во всех перестраиваемых контурах применяют одинаковые конденсаторы переменной ёмкости, но в контур гетеродина, частота которого должна отличаться от fo, дополнительно включают постоянные конденсаторы, называемые конденсаторами сопряжения (см. рис.). Получаемые в этом случае зависимости частот fo и fr от угла поворота ручки настройки несколько отличаются от требуемых т. е. С. к. является лишь приближённым (однако с достаточной степенью точности). В современных (середина 70-х гг.) приёмниках при С. к. в качестве конденсаторов переменной ёмкости используют конденсаторы с механическим изменением ёмкости либо варакторы (варикапы).