Изменить стиль страницы

  Л. а. легче воздуха (аэростат, дирижабль и др.). Подъёмная сила аппаратов этого класса имеет аэростатическую природу (см. Воздухоплавание). Аэростат развивает лишь подъёмную силу, горизонтальное перемещение его происходит под действием ветра. Управление аэростатом сводится к изменению высоты полёта путём изменения его массы и объёма. Дирижабль имеет воздушные винты, создающие тягу и приводимые во вращение двигателями. Кроме средств управления, применяемых на аэростате, на дирижабле используются аэродинамические органы управления.

  Л. а. тяжелее воздуха (самолёт, планёр, вертолёт, винтокрыл и др.). Подъёмная сила аппаратов этого класса имеет преимущественно аэродинамическую природу. В некоторых случаях используется также газодинамический принцип создания подъёмной силы. Наиболее распространённым Л. а. тяжелее воздуха является самолёт. Его подъёмная сила создаётся в основном крылом. Значительно меньшая доля приходится на подъёмную силу фюзеляжа и оперения. Рассматриваются проекты самолётов для полётов при гиперзвуковых скоростях, у которых подъёмная сила образуется в основном корпусом. Тяга самолёта создаётся с помощью поршневого, газотурбинного или воздушно-реактивного двигателя. Ракетный двигатель используется на самолёте редко (обычно в качестве ускорителя). На перспективном гиперзвуковом самолёте возможно применение ракетного двигателя как основного средства создания тяги. Для управления самолётом используются аэродинамические органы (рули высоты и направления, элероны и др.), а также регулирование тяги.

  Подъёмная сила крыла изменяется приблизительно пропорционально квадрату скорости полёта. При малых скоростях подъёмной силы крыльев недостаточно для отрыва самолёта от поверхности Земли. Для каждого самолёта существует минимальная скорость, при которой подъёмная сила крыльев равна весу самолёта. Поэтому при взлёте необходим разбег для достижения её, а при посадке — пробег, чтобы погасить её до нуля. Это приводит к необходимости создания аэродромов со взлётно-посадочными полосами. Уменьшение минимальной скорости и соответствующее сокращение длины разбега и пробега самолёта достигается увеличением подъёмной силы крыльев посредством их механизации (см. Механизация крыла), сдува пограничного слоя с крыла, обдува крыла струями от винтов и др. способами.

  Подъёмная сила может быть создана и на неподвижном Л. а. Для этого его крылья должны двигаться относительно корпуса Л. а. Известны проекты Л. а. с машущими и колеблющимися крыльями (см. Орнитоптер). Применение нашёл вертолёт — Л. а. с несущим винтом, который можно рассматривать как систему крыльев, вращающихся в плоскости, близкой к горизонтальной. Наклоном плоскости вращения несущего винта к направлению полёта создаётся не только подъёмная сила, но и тяга. У винтокрыла подъёмная сила создаётся одновременно несущим винтом и крылом, а тяга — тянущим и несущим винтами. Существуют самолёты с винтами, плоскость вращения которых может изменяться от вертикальной до горизонтальной. Такие самолёты могут совершать вертикальные взлёт и посадку. Использование газодинамического принципа создания подъёмной силы позволяет и реактивному самолёту летать с малыми скоростями и даже «висеть», совершать вертикальные или укороченные взлёт и посадку. Это достигается отклонением вниз струи реактивного двигателя посредством поворотных сопл либо использованием специальных вертикально установленных двигателей.

  Космические Л. а. (автоматическая межпланетная станция, искусственный спутник Земли, космический корабль и др.). Из-за большого своеобразия различных этапов космического полёта и для уменьшения массы космического Л. а. делается составным. Он состоит обычно из следующих автономных частей: стартовой ракеты, орбитального или межпланетного корабля, аппарата, спускаемого на поверхность планеты. Стартовая ракета разгоняет Л. а. до скорости, равной или превосходящей орбитальную. Управление ракетой осуществляется изменением значения и направления действия тяги ракетных двигателей, а при наличии на планете атмосферы — также посредством аэродинамических рулей. Орбитальным и межпланетным кораблями управляют с помощью ракетных двигателей. При дальних межпланетных перелётах ракетный двигатель целесообразно применять также для дополнительного разгона межпланетного корабля с целью уменьшения продолжительности перелёта. Эффективность использования рабочего вещества в двигателе тем выше, чем больше скорость истечения газа из него. В ракетных двигателях поток газа разгоняют путём его нагревания за счёт сжигания химического горючего и последующего расширения в сопле. Разрабатываются двигатели для космических Л. а., в которых поток газа разгоняется до более высоких скоростей, чем в ракетном двигателе (плазменный двигатель, электростатический ракетный двигатель). На окончательном этапе полёта космического Л. а. производится его торможение ракетным двигателем. Если планета лишена атмосферы, то ракетным двигателем пользуются вплоть до соприкосновения с её поверхностью. Если же планета имеет атмосферу, то используются также аэродинамические силы. Применение подъёмной силы позволяет снизить перегрузки, неблагоприятно действующие на человека. Управление Л. а. при спуске путём изменения его подъёмной силы позволяет повысить точность посадки. Рассматриваются проекты перспективных космических аппаратов, которые смогут взлетать с поверхности Земли и садиться на её поверхность подобно самолёту.

  Лит. см. при статьях Авиация, Воздухоплавание и Космонавтика.

  В. Я. Боровой.

Большая Советская Энциклопедия (ЛЕ) i008-pictures-001-292236754.jpg

Рис. 2г. Внешний вид вертолёта Ми-10.

Большая Советская Энциклопедия (ЛЕ) i009-001-204411728.jpg

Рис. 3б. Внешний вид самолета с вертикальным взлетом и посадкой.

Большая Советская Энциклопедия (ЛЕ) i009-001-225994267.jpg

Рис. 1а. Схема, поясняющая аэростатический принцип создания подъёмной силы. На схеме: р — давление воздуха; r — плотность воздуха; g — ускорение силы тяжести; h — высота аэростата; Об. — оболочка аэростата. Стрелками показано распределение давления на поверхности летательного аппарата, окружённого воздухом.

Большая Советская Энциклопедия (ЛЕ) i010-001-253125372.jpg

Рис. 1б. Внешний вид дирижабля.

Большая Советская Энциклопедия (ЛЕ) i010-001-255343793.jpg

Рис. 3а. Схема, поясняющая газодинамический принцип создания подъемной силы. На схеме: 1 — компрессор; 2 — форсунки для распыления топлива; 3 — камера сгорания; 4 — газовая турбина; 5 — газодинамические рули, отклоняющие струю газов и, следовательно, изменяющие направление тяги двигателя.

Большая Советская Энциклопедия (ЛЕ) i010-001-265121140.jpg

Рис. 2б. Внешний вид самолёта Ту-124.

Большая Советская Энциклопедия (ЛЕ) i010-001-273120914.jpg

Рис. 2а. Схема, поясняющая аэродинамический принцип создания подъёмной силы крылом дозвукового самолёта. На схеме: r — давление воздуха; a — угол атаки крыла; V — скорость полёта; У — подъёмная сила; Р — тяга; НВ — несущий винт; ПВ — плоскость вращения несущего винта. Стрелками показано распределение давления на поверхности крыла.

Большая Советская Энциклопедия (ЛЕ) i010-001-281870206.jpg

Рис. 2в. Схема, поясняющая аэродинамический принцип создания подъёмной силы несущим винтом вертолёта. На схеме: r — давление воздуха; a — угол атаки крыла; V — скорость полёта; У — подъёмная сила; Р — тяга; НВ — несущий винт; ПВ — плоскость вращения несущего винта. Стрелками показано распределение давления на поверхности крыла.