Изменить стиль страницы

Измерение

Измере'ние, операция, посредством которой определяется отношение одной (измеряемой) величины к другой однородной величине (принимаемой за единицу); число, выражающее такое отношение, называется численным значением измеряемой величины.

  И. — одна из древнейших операций, применявшаяся человеком в практической деятельности (при распределении земельных участков, в строительном деле, при ирригационных работах и т. д.); современная хозяйственно-экономическая и общественная жизнь немыслима без И.

  Для точных наук характерна органическая связь наблюдений и эксперимента с определением численных значений характеристик исследуемых объектов и процессов. Д. И. Менделеев не раз подчёркивал, что наука начинается с тех пор, как начинают измерять.

  Законченное И. включает следующие элементы: объект И., свойство или состояние которого характеризует измеряемая величина; единицу И.; технические средства И., проградуированные в выбранных единицах; метод И.; наблюдателя или регистрирующее устройство, воспринимающее результат И.; окончательный результат И.

  Простейшим и исторически первым известным видом И. является прямое И., при котором результат получается непосредственно из И. самой величины (например, И. длины проградуированной линейкой, И. массы тела при помощи гирь и т. д.). Однако прямые И. не всегда возможны. В этих случаях прибегают к косвенным И., основанным на известной зависимости между искомой величиной и непосредственно измеряемыми величинами.

  Установленные наукой связи и количественные отношения между различными по своей природе физическими явлениями позволили создать самосогласованную систему единиц, применяемую во всех областях И. (см. Международная система единиц ).

  И. следует отличать от других приёмов количественной характеристики величин, применяемых в тех случаях, когда нет однозначного соответствия между величиной и её количественным выражением в определённых единицах. Так, визуальное определение скорости ветра по Бофорта шкале или твёрдости минералов по Мооса шкале следует считать не И., а оценкой .

  Всякое И. неизбежно связано с погрешностями измерений. Погрешности, порожденные несовершенством метода И., неточной градуировкой и неправильной установкой измерительной аппаратуры, называют систематическими. Систематические погрешности исключают введением поправок, найденных экспериментально. Погрешности другого типа — случайные — обусловлены влиянием на результат И. неконтролируемых факторов (ими могут быть, например, случайные колебания температуры, вибрации и т. д.). Случайные погрешности оцениваются методами математической статистики по данным многократных И. (см. Наблюдений обработка ).

  В некоторых случаях — особенно часто встречающихся в атомной и ядерной физике — разброс результатов И. связан не только с погрешностями аппаратуры, но и с характером самих исследуемых явлений. Например, если пучок одинаково ускоренных электронов пропустить через щель дифракционной решётки, то электроны с определённой вероятностью попадут в разные точки поставленного за решёткой экрана (см. Дифракция частиц ). Приведённый пример показывает, что распространение И. на новые области физики требует пересмотра и уточнения понятий, которыми оперируют при И. в других областях. С развитием науки и техники возникла ещё одна важная проблема — автоматизация И. Это связано, с одной стороны, с условиями, в которых осуществляются современные И. (ядерные реакторы, открытый космос и т. д.), с другой стороны — с несовершенством органов чувств человека. В современном производстве, особенно в условиях высоких скоростей, давлений, температур, непосредственное соединение измерительных устройств с регулирующими, минуя человека, позволяет перейти к наиболее совершенной форме производства — автоматизированному производству.

  И. в метрологии подразделяются на прямые, косвенные, совокупные и совместные. Прямыми называются И., при которых мера или прибор применяются непосредственно для И. данной величины (например, И. массы на циферблатных или равноплечных весах, И. температуры термометром). Косвенными называются И., результаты которых находят на основании известной зависимости между искомой величиной и непосредственно измеряемыми величинами (например, И. плотности однородного тела по его массе и геометрическим размерам). Совокупными называются И. нескольких одноимённых величин, значения которых находят решением системы уравнений, получаемых в результате прямых И. различных сочетаний этих величин (например, калибровка набора гирь, когда значения масс гирь находят на основании прямого И. массы одной из них и сравнения масс различных сочетаний гирь). Совместные И. — производимые одновременно И. двух или нескольких разноимённых величин с целью нахождения зависимости между ними (например, нахождение зависимости удлинения тела от температуры).

  Различают также абсолютные и относительные И. К первым относят косвенные И., основанные на И. одной или нескольких основных величин (например, длины, массы, времени) и использовании значений фундаментальных физических постоянных , через которые измеряемая физическая величина может быть выражена. Под вторыми понимают И. либо отношения величины к одноимённой величине, играющей роль произвольной единицы, либо изменения величины относительно другой, принимаемой за исходную.

  Найденное в результате И. значение измеряемой величины представляет собой произведение отвлечённого числа (числового значения) на единицу данной величины.

  Результаты И. из-за погрешностей всегда несколько отличаются от истинного значения измеряемой величины, поэтому результаты И. обычно сопровождают указанием оценки погрешности (см. Погрешности измерений ).

  Обеспечение единства И. в стране возлагается на метрологическую службу, хранящую эталоны единиц и производящую поверку применяемых средств И. Широкое распространение получила классификация И. по объектам И. Согласно ей, различают И. линейные (И. длины, площади, объёма), механические (И. силы, давления и пр.), электрические и т. д. В общем эта классификация соответствует основным разделам физики.

  Лит.: Маликов С. Ф., Тюрин Н. И., Введение в метрологию, 2 изд., М., 1966; Маликов С. Ф., Введение в технику измерений, 2 изд., М., 1952; Яноши Л., Теория и практика обработки результатов измерений, пер. с англ., 2 изд., М., 1968; «Измерительная техника», 1961, № 12: 1962, № 4, 6, 8, 9, 10.

  К. П. Широков.

  В математической теории И. отвлекаются от ограниченной точности физических И. Задача И. величины Q при помощи единицы меры U состоит в нахождении числового множителя q в равенстве

Большая Советская Энциклопедия (ИЗ) i-images-128401237.png
                      (1)

при этом Q и U считаются положительными скалярными величинами одного и того же рода (см. Величина ), а множитель q — положительное действительное число, которое может быть как рациональным, так и иррациональным. Для рационального q = m/n (m и n — натуральные числа) равенство (1) имеет весьма простой смысл: оно означает, что существует такая величина V (n -я доля от U ), которая, будучи взята слагаемым n раз, даёт U, будучи же взята слагаемым m раз, даёт Q :

Большая Советская Энциклопедия (ИЗ) i-images-191983516.png
.

  В этом случае величины Q и U называются соизмеримыми. Для несоизмеримых величин U и Q множитель q иррационален (например, равен числу p, если Q есть длина окружности, а U — её диаметр). В этом случае самое определение смысла равенства (1) несколько сложнее. Можно определить его так: равенство (1) обозначает, что для любого рационального числа r