Изменить стиль страницы

  В широком смысле слова дифракционное рассеяние всегда имеет место при упругом рассеянии различных элементарных частиц атомами и атомными ядрами, а также друг другом. С другой стороны, представление о корпускулярно-волновом дуализме материи укрепилось при анализе явлений, всегда считавшихся типично волновыми, например дифракции рентгеновских лучей — коротких электромагнитных волн с длиной волны l » 0,5—5 А. В то же время начальный и рассеянный пучки рентгеновских лучей можно рассматривать и регистрировать как поток частиц — фотонов, определяя с помощью счётчиков фотонов число фотонов рентгеновского излучения в этих пучках.

  Следует подчеркнуть, что волновые свойства присущи каждой частице в отдельности. Это было подтверждено опытом В. А. Фабриканта (1947) по дифракции электронов, поочерёдно летящих через образец. При этом постепенно, по истечении некоторого времени, возникала обычная картина дифракции. Это означало, что каждый из электронов подчиняется всем законам волновой оптики, а дифракционный эффект обязан взаимодействию волны де Бройля каждого электрона со всем объёмом кристалла. Начальная волна y [см. формулу (2)], описывающая движение начального электрона, при прохождении через кристалл превращается в рассеянную волну y.

  Образование дифракционной картины при рассеянии частиц интерпретируется в квантовой механике следующим образом. Прошедший через кристалл электрон в результате взаимодействия с кристаллической решёткой образца отклоняется от своего первоначального движения и попадает в некоторую точку фотопластинки, установленной за кристаллом для регистрации электронов. Войдя в фотографическую эмульсию, электрон проявляет себя как частица и вызывает фотохимическую реакцию. На первый взгляд попадание электрона в ту или иную точку пластинки носит совершенно произвольный характер. Но при длительной экспозиции постепенно возникает упорядоченная картина дифракционных максимумов и минимумов в распределении электронов, прошедших через кристалл.

  Точно предсказать, в какое место фотопластинки попадёт данный электрон, нельзя, но можно указать вероятность его попадания после рассеяния в ту или иную точку пластинки. Эта вероятность определяется волновой функцией электрона y, точнее квадратом её модуля (т.к. y — комплексная функция) |y|2. Однако, поскольку вероятность при больших числах испытаний реализуется как достоверность, при многократном прохождении электрона через кристалл или, как это имеет место в реальных дифракционных экспериментах, при прохождении через образец пучка электронов, содержащего громадное количество частиц, величина |y|2 определяет уже распределение интенсивности в дифрагированных пучках. Т. о., результирующая волновая функция электрона y, которую можно рассчитать, зная y и потенциальную энергию взаимодействия электрона с кристаллом, даёт полное описание дифракционного опыта в статистическом смысле.

  Специфика дифракции различных частиц. Атомная амплитуда рассеяния. Вследствие общности геометрических принципов дифракции теория Д. ч. многое заимствовала из развитой ранее теории дифракции рентгеновских лучей. Однако взаимодействие разного рода частиц — электронов, нейтронов, атомов и т.п. — с веществом имеет различную физическую природу. Поэтому при рассмотрении Д. ч. на кристаллах, жидкостях и т.д. существенно знать, как рассеивает различные частицы изолированный атом вещества. Именно в рассеянии частиц отдельными атомами проявляется специфика дифракции различных частиц. Например, рассеяние электронов определяется взаимодействием его электрического заряда с электростатическим потенциалом атома j(r) (r — расстояние от атома), который складывается из потенциала положительно заряженного ядра и потенциала электронной оболочки атома; потенциальная энергия этого взаимодействия U = еj(r). Рассеяние нейтронов определяется потенциалом их сильного взаимодействия с атомным ядром, а также взаимодействием магнитного момента нейтрона с магнитным моментом атома (магнитное рассеяние нейтронов; см. Нейтронография).

  Количественно рассеивающую способность атома характеризуют величиной, которая называется атомной амплитудой рассеяния f (J), где J — угол рассеяния, и определяется потенциальной энергией взаимодействия частиц данного сорта с атомами рассеивающего вещества. Интенсивность рассеяния частиц пропорциональна f2(J).

  Если атомная амплитуда известна, то, зная взаимное расположение рассеивающих центров — атомов вещества в образце (т. е. зная структуру рассеивающего образца), можно рассчитать общую картину дифракции (которая образуется в результате интерференции вторичных волн, исходящих из рассеивающих центров).

  Теоретический расчёт, подтверждённый экспериментальными измерениями, показывает, что атомная амплитуда рассеяния электронов fэ максимальна при J = 0 и спадает с увеличением J. Величина fэ зависит также от заряда ядра (атомного номера) Z и от строения электронных оболочек атома, в среднем возрастая с увеличением Z приблизительно как Z1/3 для малых J и как Z2/3 при больших значениях J, но обнаруживая колебания, связанные с периодическим характером заполнения электронных оболочек.

  Атомная амплитуда рассеяния нейтронов fH для тепловых нейтронов (нейтронов с энергией в сотые доли эв) не зависит от угла рассеяния, т. е. рассеяние таких нейтронов ядром одинаково во всех направлениях (сферически симметрично). Это объясняется тем, что атомное ядро с радиусом порядка 10-13 см является «точкой» для тепловых нейтронов, длина волны которых составляет 10-8 см. Кроме того, для рассеяния нейтронов нет явной зависимости от заряда ядра Z. Вследствие наличия у некоторых ядер так называемых резонансных уровней с энергией, близкой к энергии тепловых нейтронов, fH для таких ядер отрицательны.

  Атом рассеивает электроны значительно сильнее, чем рентгеновские лучи и нейтроны: абсолютные значения амплитуды рассеяния электронов fэ — это величины порядка 10-8 см, рентгеновских лучей — fp ~ 10-11 см, нейтронов — fH ~ 10-12 см. Т. к. интенсивность рассеяния пропорциональна квадрату амплитуды рассеяния, электроны взаимодействуют с веществом (рассеиваются) примерно в миллион раз сильнее, чем рентгеновские лучи (и тем более нейтроны). Поэтому образцами для наблюдения дифракции электронов обычно служат тонкие плёнки толщиной 10-6—10-5 см, тогда как для наблюдения дифракции рентгеновских лучей и нейтронов нужно иметь образцы толщиной в несколько мм.

  Дифракцию на любой системе атомов (молекуле, кристалле и т.п.) можно рассчитать, зная координаты их центров ri и атомные амплитуды fi для данного сорта частиц.

  Наиболее ярко эффекты Д. ч. выявляются при дифракции на кристаллах. Однако тепловое движение атомов в кристалле несколько изменяет условия дифракции, и интенсивность дифрагированных пучков с увеличением угла J в формуле (6) уменьшается. При Д. ч. жидкостями, аморфными телами или молекулами газов, упорядоченность которых значительно ниже кристаллической, обычно наблюдается несколько размытых дифракционных максимумов.

  Д. ч., сыгравшая в своё время столь большую роль в установлении двойственной природы материи — корпускулярно-волнового дуализма (и тем самым послужившая экспериментальным обоснованием квантовой механики), давно уже стала одним из главных рабочих методов для изучения строения вещества. На Д. ч. основаны два важных современных метода анализа атомной структуры вещества — электронография и нейтронография.