Изменить стиль страницы

  Проблема происхождения и развития звёзд в Г. является фундаментальной проблемой. Существуют две главные, но противоположные точки зрения на формирование звёзд. Согласно первой из них, звёзды образуются из газовой материи, в значительном количестве рассеянной в Г. и наблюдаемой оптическими и радиоастрономическими методами. Газовое вещество там, где его масса и плотность достигают достаточно большой величины, сжимается и уплотняется под действием собственного притяжения, образуя холодный шар. В процессе дальнейшего сжатия температура внутри него, однако, повышается до нескольких млн. градусов; этого достаточно для возникновения термоядерных реакций, которые вместе с процессами излучения и обусловливают дальнейшую эволюцию этого шара —звезды. Согласно второй точке зрения, звёзды образуются из некоторого сверхплотного вещества. Сверхплотное вещество такого рода ещё не обнаружено и его свойства неизвестны, но то обстоятельство, что в наблюдаемой Вселенной процессы истечения масс из звёзд, деления и распада систем наблюдаются во многих случаях, процессы же образования звёзд из межзвёздного вещества не наблюдаются, говорит в пользу второй точки зрения.

  Предполагается, что Г. в целом развилась в процессе конденсации первичного газового облака, богатого водородом; образовавшиеся при этом звёзды в нашу эпоху наблюдаются как звёзды сферической составляющей, бедные металлами и имеющие наибольший возраст. Первичное газовое облако, продолжая сжиматься под действием гравитационных сил, обогащалось металлами за счёт выбрасывания вещества из недр ранее образовавшихся звёзд, в которых уже в течение многих сотен млн. лет шли внутриядерные реакции и водород превращался в более тяжёлые элементы. Поэтому более позднее «поколение» звёзд, образовавшее диск Г., оказалось более богатым металлами. Эта концепция объясняет наблюдаемое распределение скоростей звёзд и расслоение последних по подсистемам. Тем не менее в изложенной картине остаётся немало противоречий. Развиваемое рядом советских астрономов представление о роли в эволюции галактик мощных взрывных отталкивательных сил, таящихся в недрах галактик, может пролить новый свет на проблему развития Г.

  См. илл.

Лит.: Паренаго П. П., Курс звёздной астрономии, 3 изд., М., 1954; Бок Б. Дж. и Бок П. Ф., Млечный путь, пер. с англ., М., 1959; Курс астрофизики и звездной астрономии, т. 2, М., 1962; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1966.

  Е. К. Харадзе.

Большая Советская Энциклопедия (ГА) i009-001-218525836.jpg

Часть Млечного Пути в созвездиях Орла и Лебедя. Видны тёмные и светлые участки («туманности» и «облака»).

Большая Советская Энциклопедия (ГА) i009-001-229558100.jpg

Галактика в созвездии Андромеды.

Большая Советская Энциклопедия (ГА) i010-001-246703535.jpg

Галактика в созвездии Волос Вероники.

Галактики

Гала'ктики , гигантские звёздные системы, подобные нашей звёздной системе — Галактике , в состав которой входит Солнечная система. (Термин «галактики», в отличие от термина «Галактика», пишут со строчной буквы.) Устаревшие название Г. «внегалактические туманности» и «анагалактические туманности» отражают тот факт, что они видны на небе как светлые туманные пятна вне полосы Млечного Пути (Галактики), которая является, т. о., для них «зоной избегания». В этой зоне Г. не видны из-за концентрации тёмной, поглощающей свет пылевой материи вблизи экваториальной плоскости нашей Галактики. Природа Г. стала известна после того, как американский астроном Э. Хаббл в 20-х гг. 20 в. обнаружил, что ближайшие Г. состоят из множества очень слабых звёзд, которые при наблюдении в небольшие телескопы сливаются в сплошное светлое пятно — туманность. Среди отдельных наиболее ярких звёзд ему удалось обнаружить переменные звёзды типа цефеид , измерение видимого блеска которых позволяет установить расстояние до систем, в которые они входят. Таким путём было окончательно установлено, что Г. находятся далеко за пределами нашей Галактики и имеют размеры, сравнимые с ней. Ближайшими к ним г. оказались похожие на обрывки Млечного Пути Магеллановы Облака , расстояние до которых составляет 46 килопарсек (около 150 тыс. световых лет). В поперечнике они в несколько раз меньше нашей Галактики и, по-видимому, являются её спутниками. Расстояния до далёких Г. оценивают по красному смещению — смещению линий в спектре Г., обусловленному Доплера эффектом . Это смещение статистически возрастает с увеличением расстояния до Г. Расстояние до наиболее далёких Г., различимых на фотографиях, полученных с помощью самых крупных телескопов, составляет более 1 млрд. парсек (более 3 млрд. световых лет). В 20—30-х гг. 20 в. Хаббл разработал основы структурной классификации Г., согласно которой различают 3 класса Г.: 1) спиральные Г., характерные 2 сравнительно яркими ветвями, расположенными вокруг ядра по спирали. Ветви выходят либо из яркого ядра (такие Г. обозначаются S), либо из концов светлой перемычки, пересекающей ядро (обозначаются SB). 2) Эллиптические Г. (Е), имеющие форму эллипсоидов. 3) Иррегулярные (неправильные) Г. (I), обладающие неправильными формами. По степени клочковатости ветвей спиральные Г. разделяются на подтипы: а , b и с . У первых из таких Г. ветви аморфны, у вторых — несколько клочковаты, у третьих — очень клочковаты, а ядро всегда неярко и мало. Во 2-й половине 40-х гг. 20 в. У. Бааде (США) установил, что клочковатость спиральных ветвей и их голубизна растут с повышением содержания в них горячих голубых звёзд, их скоплений и диффузных туманностей. Центральные части спиральных Г. желтее, чем ветви, и содержат старые звёзды (население 2-го типа, по Бааде, или население сферической составляющей), тогда как плоские спиральные ветви состоят из молодых звёзд (население 1-го типа, или население плоской составляющей). Плотность распределения звёзд в пространстве растет с приближением к экваториальной плоскости спиральных Г. Эта плоскость является плоскостью симметрии системы, и большинство звёзд при своём обращении вокруг центра Г. остаётся вблизи неё; периоды обращения составляют 107 —109 лет. При этом внутренние части вращаются как твёрдое тело, а на периферии угловая и линейная скорости обращения убывают с удалением от центра. Однако в некоторых случаях находящееся внутри ядра ещё меньшее ядрышко («керн») вращается быстрее всего. Аналогично вращаются и неправильные Г., являющиеся также плоскими звёздными системами. Эллиптические Г. состоят из звёзд 2-го типа населения. Вращение обнаружено лишь у наиболее сжатых из них. Космической пыли в них, как правило, нет, чем они отличаются от неправильных и особенно спиральных Г., в которых поглощающее свет пылевое вещество имеется в большом количестве. В спиральных Г. оно составляет от несколько тысячных до сотой доли полной их массы. Вследствие концентрации пылевого вещества к экваториальной плоскости, оно образует темную полосу у Г., повёрнутых к нам ребром и имеющих вид веретена. Радиоастрономические наблюдения позволили обнаружить в Г. скопления нейтрального водорода, Масса его относительно мала в спиральных Г. Sa , достигает нескольких процентов в Sb и доходит до 10% от массы звёзд в галактиках Sc , а также в неправильных Г. В основном нейтральный водород — главная часть газовой составляющей Г. — расположен в узком экваториальном слое, но отдельные облака наблюдаются и далеко от него, где нет весьма горячих звёзд, способных ионизовать его и привести в состояние свечения.

  Последующие наблюдения показали, что описанная классификация недостаточна, чтобы систематизировать всё многообразие форм и свойств Г. Так, были обнаружены Г., занимающие в некотором смысле промежуточное положение между спиральными и эллиптическими Г. (обозначаются S0). Эти Г. имеют огромное центральное сгущение и окружающий его плоский диск, но спиральные ветви отсутствуют, В 60-х гг. 20 в. были открыты многочисленные кольцеобразные и дисковидные Г. со всеми градациями обилия горячих звёзд и пыли. Ещё в 30-х гг. 20 в. были открыты эллиптические карликовые Г. в созвездиях Печи и Скульптора с крайне низкой поверхностной яркостью, настолько малой, что эти, одни из ближайших к нам, Г. даже в центральной своей части с трудом видны на фоне неба. С др. стороны, в начале 60-х гг. 20 в. было открыто множество далёких компактных Г., из которых наиболее далёкие по своему виду неотличимы от звёзд даже в сильнейшие телескопы. От звёзд они отличаются спектром, в котором видны яркие линии излучения с огромными красными смещениями, соответствующими таким большим расстояниям, на которых даже самые яркие одиночные звёзды не могут быть видны. В отличие от обычных далёких Г., которые из-за сочетания истинного распределения энергии в их спектре и красного смещения выглядят красноватыми, наиболее компактные Г. (называемые также квазизвёздными Г.) имеют голубоватый цвет. Как правило, эти объекты в сотни раз ярче обычных сверхгигантских Г., но есть и более слабые. У многих Г. обнаружено радиоизлучение нетепловой природы, возникающее, согласно теории сов. астронома И. С. Шкловского, при торможении в магнитном поле электронов и более тяжелых заряженных частиц, движущихся со скоростями, близкими к скорости света (т. н. синхротронное излучение). Такие скорости частицы получают в результате грандиозных взрывов внутри Г.