Изменить стиль страницы

  В середине 20-х гг. 20 в. Г. Стрёмберг (США), изучая закономерности движения Солнца относительно различных групп звёзд, обнаружил т. н. асимметрию звёздных движений, которая дала фактический материал для обоснования многих выводов о сложности строения Г. Швед. астроном Б. Линдблад (20-е гг. 20 в.), изучая динамику и строение Г. на основе анализа скоростей звёзд, обнаружил сложность строения Г. и принципиальное различие пространственных скоростей звёзд, населяющих разные части Г., хотя все они и связаны в единую систему, симметричную относительно галактической плоскости. Голландским астроном Я. Оорт в 1927 на основе статистического изучения лучевых скоростей и собственных движений звёзд доказал существование вращения Г. вокруг собственной малой оси. При этом оказалось, что внутренние, более близкие к центру, части Г. вращаются быстрее, чем внешние. На расстоянии Солнца от центра Г. (10 килопарсек ) эта скорость около 250 км/сек ; период полного оборота — около 180 млн. лет.

  Доказательство межзвёздного поглощения света звёзд (1930, сов. астроном Б. А. Воронцов-Вельяминов, американский астроном Р. Трамплер), его количественные оценки и учёт позволили уточнить расстояния до отдельных галактических объектов и размеры Г., положили начало выявлению деталей её структуры. Многочисленные исследования пространственного распределения звёзд различных типов (советский астроном П. П. Паренаго и др.), собственных движений звёзд (ранние работы С. К. Костинского на Пулковской обсерватории, американского астронома В. Боса и др.), движения Солнца в пространстве, а также и движений звёздных потоков (советским астроном В. Г. Фесенков, голландским астроном А. Блау и др.), изучение галактического гравитационного поля и др. позволили открыть, с одной стороны, много общих закономерностей, а с другой — большое разнообразие в кинематических, физических и структурных характеристиках отдельных составляющих Г.

  В 30-е и последующие годы 20 в. значительных успехов в области исследований Г. достигли советские астрономические обсерватории, Важные результаты получены: в области динамики звёздных систем; в наблюдениях и составлении многочисленных каталогов параметров звёзд и др. галактических объектов; в развитии новых взглядов на природу межзвёздной среды; в разработке новых теорий и методов, позволивших выполнить количественные оценки параметров, характеризующих поглощение в галактическом пространстве; в выяснении связей между звёздами и межзвёздным веществом. В избранных областях Млечного Пути проведены по плану Г. А. Шайна (СССР) и по комплексному плану П. П. Паренаго фотометрия и спектральная классификация десятков тысяч звёзд. Огромное значение для понимания процессов развития Г. имело открытие звёздных ассоциаций . Большую роль в изучении Г. сыграли успехи советской науки о переменных звёздах. Сопоставление их физических особенностей и морфологических характеристик с возрастными и пространственными параметрами позволило решить ряд задач структуры и природы Г. Исследования советских и американских астрономов сделали очевидным сложное строение Г. Оказалось, что различным частям Г. соответствуют различные, вполне определенные элементы их состава. В 1948 советские исследователи в результате наблюдений в инфракрасных лучах впервые получили изображение ядра Г. Наблюдения 50-х гг. 20 в. показали наличие у нашей Г. спиральных рукавов. Изучение Г., её строения и развития — предмет, в первую очередь, трёх разделов астрономии: звёздной астрономии, астрометрии и астрофизики. Все эти разделы сыграли большую роль в уточнении и детализации наших представлений о Г. Большое значение для исследования Г. имело развитие радиоастрономии, получившей много новых сведений о Г. Радиоастрономические наблюдения позволили обнаружить большое количество источников излучения в радиодиапазоне в межзвёздных пространствах Г., массы нейтрального водорода, изучить их движения, выяснить общие черты внутреннего строения Г.

  К началу 70-х гг. 20 в. в результате исследований, выполненных в СССР и за рубежом, сложилось следующее представление о Г. Степень общей сплюснутости Г., т. е. отношение толщины Г. к её экваториальному диаметру, составляет примерно 1:10, хотя резко очерченных границ Г. не имеет, Толщина расположенного вдоль плоскости галактического экватора слоя, внутри которого находится большинство звёзд и основной массы межзвёздного вещества, равна 400—500 парсек . Пространственная плотность звёзд в нём такова, что одна звезда приходится на объём, равный кубу с ребром в 2 парсека . В окрестностях Солнца плотность несколько меньше. Она значительно возрастает по мере приближения к центру Г., который при наблюдении с Земли виден в созвездии Стрельца. Следовательно, распределение звёзд характеризуется концентрацией как к плоскости Г., так и к её центру. Общая масса межзвёздного газа в Г. составляет около 0,05 массы всех звёзд, и его средня плотность близ плоскости экватора не превосходит 10-25 или 10-24 г/см3 . Межзвёздная пыль, состоящая из твёрдых частичек, радиусы которых порядка 10-4 —10-5 см , в своей массе примерно в 100 раз меньше массы газа. Не влияя из-за ничтожной массы на динамику Г., пыль тем не менее заметно влияет на видимую структуру Г., рассеивая свет звёзд, проходящий через её среду. Ядро Г., будучи погружено в относительно плотные массы межзвёздного вещества, мало доступно оптическим наблюдениям, но радиоастрономические наблюдения указывают на активность ядра, присутствие в нём больших масс вещества и источников энергии.

  Г. имеет резко выраженное подсистемное строение; различают три подсистемы: плоскую, промежуточную и сферическую. Плоская подсистема характеризуется наличием молодых горячих звёзд, переменных звёзд типа долгопериодических цефеид, звёздных ассоциаций, рассеянных звёздных скоплений и газо-пылевого вещества. Все они сосредоточены у галактической плоскости в форме экваториального диска (толщиной 1 /20 поперечника Г.). Средний возраст звёздного населения диска около 3 млрд. лет. Слабее концентрируются к плоскости Г. жёлтые и красные звёзды-карлики и звёзды-гиганты, занимающие объём в виде сильно сплюснутого эллипсоида. Все субкарлики, жёлтые и красные гиганты, переменные звёзды типа короткопериодических цефеид и шаровые звёздные скопления образуют сферическую составляющую (иногда называется гало), заполняя сферический объём (со средним диаметром, превышающим 30 тыс. парсек , т. е. 100 тыс. световых лет) с резким падением плотности в направлении от центральных областей к периферии. Её возраст более 5 млрд. лет. Объекты различных составляющих отличаются друг от друга также и скоростями движения, и химическим составом. Звёзды плоской составляющей имеют большие скорости движения относительно центра Г. и они богаче металлами. Это указывает на то, что звёзды разных типов, относящиеся к разным подсистемам, формировались при различных начальных условиях и в различных областях пространства, занимаемого галактическим веществом. Вся галактическая система погружена в обширную газовую массу, которую иногда называют галактической короной . Из центральной области Г. распространяются вдоль галактической плоскости спиральные ветви, которые, огибая ядро и разветвляясь, постепенно расширяются, теряя яркость. Спиральной структурой, оказавшейся весьма характерным свойством галактик на некотором этапе их эволюции, Г. сходна с множеством др. звёздных систем того же типа, что и она, имеющих такой же звёздный состав. В развитии спиральной структуры, по-видимому, играют роль гравитационные силы и магнитогидродинамические явления, при этом на неё влияют и особенности вращения Г. Вдоль спиральных ветвей происходит звездообразование и они населены наиболее молодыми галактическими объектами.

  Вопросы эволюции Г. в целом или отдельных её составных элементов имеют большое мировоззренческое значение. В течение долгого времени господствовал взгляд об одновременном образовании всех звёзд и др. объектов Г. Такой взгляд связывался с признанием единовременного происхождения всех галактик в одной точке Вселенной и их последующего «разбегания» в разные стороны от неё. Однако детальные исследования, основанные на многочисленных наблюдениях, привели к заключению (советским астроном В. А. Амбарцумян), что процесс звёздообразования продолжается и в настоящую эпоху.