Второй способ, которым частота гена B в популяции может затрагивать перспективы выживания гена А — «межтелесное» взаимодействие. Жизненное влияние здесь основано на вероятности, что любое тело, в котором находится А, встретит другое тело, в котором находится B. Мои гипотетические цикады являются примером этого. Такой же пример предоставляет теория соотношения полов Фишера. Как я подчеркнул, одна из моих целей в этой главе состоит в том, чтобы минимизировать различие между двумя видами взаимодействий генов, внутри- и межтелесного.
Но теперь рассмотрим взаимодействия между генами в различных генофондах и различных видах. Мы заметим, что имеется довольно небольшое различие между межвидовыми взаимодействиями генов, и внутривидовыми межтелесными взаимодействиями генов. Ни в том, ни в другом случае взаимодействующие гены не имеют общего тела. В обоих случаях перспективы выживания каждого могут зависеть от частоты другого гена в его собственном генофонде. Позвольте мне проиллюстрировать этот момент, снова используя мысленный эксперимент с люпином. Предположим, что имеется вид жука, который полиморфен подобно цикадам. Примем, что в некоторых областях розовые морфы обоих видов, и цикад и жуков, преобладают, а других — голубые морфы, опять же — обоих видов. Эти два вида отличаются по размеру тела. Они «сотрудничают» в фальсифицировании соцветий; меньшие по размеру цикады, предпочитают сидеть около кончиков стеблей, где логично ожидать маленькие цветы, а большие по размеру жуки предпочитают сидеть ближе к основанию каждого фальшивого соцветия. Объединённое «соцветие» жуков и цикад дурачит птиц более эффективно, чем одни жуки, или одни цикады.
Частотно-зависимый отбор модели-2 будет стремиться привести эволюцию к одному из двух эволюционно стабильных состояний точно так же, как и раньше, за исключением того, что теперь в процесс вовлечены два вида. Если исторический случай породит в одной локальной области преобладание розовых морф (любого вида), то отбор в обеих видах одобрит преобладание розовых морф над голубыми; и наоборот. Если жук относительно недавно появился в области, уже колонизированной цикадами, то направление отбора жуков будет зависеть от цвета локально преобладающей морфы цикад. Таким образом, будет иметь место частотно-зависимое взаимодействие между генами в двух различных генофондах, генофондах двух нескрещивающихся видов. В деле имитации соцветий люпина, цикады могли бы столь же эффективно сотрудничать с пауками [35] или улитками — как и с жуками или с цикадами другого вида. Модель-2 работает и между видами, и между типами, как и между особями и даже внутри особей.
И между царствами тоже. Рассмотрим взаимодействие между льном (Linum usiiissimum) и грибковой ржавчиной Melampsora lini, хотя это скорее антагонистическое, чем сотрудничающее взаимодействие. "Имеется по существу однозначное соответствие между определённой аллелью у гриба, и соответствующей аллелью у льна, управляющей сопротивлением этой аллели у гриба. Эта система «ген-против-гена» с тех пор была обнаружена у большого числа других видов растений… Модели взаимодействий ген-против-гена не сформулированы в терминах экологических параметров вследствие специфичности природы генетических систем. Это тот случай, когда генетические взаимодействия между видами могут быть поняты без ссылок на фенотипы. Модель системы ген-против-гена обязательно должна иметь межвидовую частотную зависимость… (Slatkin & Мейнард Смит 1979, сс. 255–256).
В этой главе (как в других), я использовал гипотетические мысленные эксперименты, дабы способствовать ясному пониманию. Но если они покажутся читателю слишком неправдоподобными, то позвольте мне снова обратиться к Виклеру за примером реальной цикады, которая проделывает нечто, как минимум столь же неправдоподобное как и мои изобретения. Ityraea nigrocincta, подобно I. gregorii, практикует совместную имитацию люпиноподобных соцветий, но она "обладает продвинутой особенностью, вытекающей из того, что оба её пола имеют две морфы, зелёную и жёлтую[36]. Эти две морфы могут садиться вместе, причём зелёные формы стремятся сесть в верхней части стебля, особенно на вертикальных стеблях; жёлтые формы садятся ниже. В результате получается чрезвычайно убедительное «соцветие», ибо настоящие цветы в соцветии часто раскрываются последовательно — снизу вверх; зелёные завязи всё ещё присутствуют на вершине, когда нижняя часть покрыта открытыми цветами" (Wickler 1968).
Эти три главы расширили концепцию фенотипической экспрессии генов лёгкими мазками. Мы начали с признания того, что даже в пределах тела есть много степеней дальнодействующего контроля гена над фенотипом. Для ядерного гена возможно проще управлять формой клетки, в которой он находится, чем управлять формой некоторой другой клетки, или всего тела, в котором эта клетка находится. Тем не менее, мы традиционно объединяем эти влияния вместе и называем их генетическим контролем фенотипа. Мой тезис состоял в том, что дальнейший концептуальный шаг за пределы данного тела является сравнительно небольшим. Однако он не банален, и поэтому я старался развивать идею постепенно, через неодушевленные изделия, к внутренним паразитам, управляющим поведением своих хозяев. От внутренних паразитов мы переместились (с помощью кукушек) к дальнодействию. В теории, генетическое дальнодействие может включать почти все взаимодействия между особями — как того же, так и другого вида. Живой мир можно рассматривать как сеть взаимодействующих полей власти репликаторов.
Мне трудно представить себе ту математику, которая в конечном счёте требуется для понимания деталей. Я довольно смутно вижу фенотипические признаки, которые в эволюционном пространстве растаскиваются в разных направлениях в ходе отбора репликаторов. Сущность моего подхода в том, что репликаторы тянущие любую данную фенотипическую особенность, будут иметь некоторое влияние как вне тела, так и внутри его. Какие-то из них будет тащить очевидно тяжелее, чем другие, так что вектор влияния будет иметь как переменный модуль, так и направление. Возможно, что теория гонок вооружений — "эффект редкого врага", "принцип жизни — обеда", и т. д. — будет играть важную роль формировании этих величин. Явная физическая близость будет вероятно тоже играть роль: представляется вероятным, что гены при прочих равных условиях, будут проявлять большую власть над близлежащими фенотипическими признаками, чем над отдалённым. Важный особый случай этого эффекта — клетки будут вероятно находиться под более мощным влиянием генов внутри них, чем генами внутри других клеток. То же самое справедливо и для тел. Но это будут количественные эффекты, сбалансированные с другими факторами из теории гонки вооружений. Иногда, скажем — из-за "эффекта редкого врага", гены в других телах могут проявлять большую власть над конкретными аспектам его фенотипа, чем «собственные» гены тела. Предчувствую, что почти все фенотипические признаки при рассмотрении обнаружат знаки компромисса между внутренними и внешними силами репликатора.
Идея конфликта и компромисса между многими давлениями отбора, действующими на данный фенотипический признак, конечно хорошо знакома из обычной биологии. Мы часто говорим например, о размере хвоста птицы, как адаптивном компромиссе между требованиями аэродинамики и требованиями сексуальной привлекательности, если самки предпочитают самцов с более длинными хвостами. Я не знаю, какая математика подойдёт для описания таких внутрителесных конфликтов и компромиссов, но в любом случае она должна быть обобщена на аналогичные проблемы генетического дальнодействия и расширенные фенотипы.
Но у меня нет крыльев, на которых я мог бы воспарить в математических сферах. Мне нужны устные сообщения от тех, кто изучает животных в поле. Какое изменение внесёт доктрина расширенного фенотипа в наше фактическое видение животных? Сейчас даже самые серьёзные полевые биологи подпишутся под теоремой (в основном — Гамильтона), гласящей, что животные будут вести себя так, чтобы максимизировать возможности выживания всех своих генов. Я уточнил эту теорему, придя к новой центральной теореме расширенного фенотипа: поведение животного направлено на максимизацию выживания генов "этого поведения", безотносительно к тому, находятся ли эти гены в теле данного животного, исполняющего данное поведение, или нет. Эти две теоремы были бы тождественны, если бы животные фенотипы всегда пребывали бы под чистым контролем своих собственных генотипов, и были бы неподвластны генами других организмов. Математическая теория, призванная обработать количественное взаимодействие противоречивых давлений, могла бы сделать возможно самое простое качественное заключение — поведение, которое мы рассматриваем, может быть, по крайней мере частично, адаптацией во благо выживания генов какого-то другого животного или растения. И потому может быть решительно неадекватно для организма, исполняющего это поведение.