Однако этот генетик мог иметь дело с нейтральным признаком в смысле более ранних дискуссий (Fisher & Ford 1950; Wright 1951). Генетическое различие могло проявляться на фенотипическом уровне, будучи нейтральным с точки зрения отбора. Но математические вычисления, наподобие поделанных Фишером (1930b) и Холдейном (1932a) показывают, насколько может быть ненадёжным человеческое субъективное суждение про "очевидно незначительное" влияние некоторых биологических признаков. Холдейн, например показывал, что в предположительно типичной популяции такое слабое давление отбора как 1 к 1000 потребует лишь несколько тысяч поколений, чтобы привести первоначально редкую мутацию к фиксации — а это небольшое время по геологическим меркам. Кажется в вышеупомянутой дискуссии Стьюэлл Райт был неправильно истолкован (см. ниже). Райта (1980) привело в замешательство то, что идея об эволюции неадаптивных признаков посредством генетического дрейфа была названа "скорбным эффектом Райта", и не "только потому, что эта идея уже была выдвинута другими, но и потому, что я первый сам её настоятельно отклонил (1929), заявив, что чистый случайный дрейф ведёт "неизбежно к вырождению и исчезновению". "Я отнёс очевидные неадаптивные таксономические различия к проявлениям плейотропии; тут нет элементарного невежества значимости адаптации". Райт на фактах показывал, как хитроумная смесь дрейфа и отбора может производить адаптацию более эффективную, чем если б действовал только отбор.
Второе предложенное ограничение на совершенствование касается аллометрии (Huxley 1932): "Размер рогов у самца оленя увеличивается непропорционально более размера тела… чем больше сам олень, тем больше у него рога по отношению к его телу. Тогда нет нужды предлагать явно адаптивную причину для наличия чрезвычайно больших рогов у крупного оленя" (Levontin 1979b). Хорошо, Левонтин высказал это мнение, но я перефразирую его. В сущности, оно исходит из предположения, что аллометрическая константа постоянна в смысле данной богом непреложности. Но константы в одном масштабе времени могут быть переменными в другом. Аллометрическая константа — это параметр эмбрионального развития. Как и любой другой аналогичный параметр, она может быть подвержена генетическим вариациям, и потому может измениться на эволюционных интервалах времени (Клаттон-Брок & Харви 1979). Получается, что замечание Левонтина подобно следующему: все приматы имеют зубы; это настолько простой факт, касающийся приматов, что нет необходимости предлагать явную адаптивную причину наличия зубов у приматов. Вероятно, что он имел в виду нечто следующее: у оленей появились такие особенности развития, при которых рост рогов по отношению к размеру является аллометрическим с конкретной величиной аллометрической константы. Очень может быть, что эволюция этой аллометрической системы развития прошла под действием давлений отбора, не имеющих никакого отношения к социальной функции рогов: вероятно это было хорошо совместимо с ранее действовавшими процессами развития; какими именно — мы не поймём, пока мы не узнаем больше о биохимических и клеточных подробностях эмбриологии. Возможно, что этологическая значимость обладания сверхкрупными рогами крупного оленя связана с определённым селективным эффектом, но это давление отбора, вероятно, не слишком выделяется по значимости среди других селективных факторов, обусловленных неизвестными внутренними частностями эмбрионального развития.
Вильямс (1966, с. 16) привлёк аллометрию в поддержку предположений о давлениях отбора, ведущих к увеличению размера мозга у людей. Он предложил, что изначально селекция была сфокусирована на ранней обучаемости детей. "Результирующий отбор на овладение вербальными способностями в как можно более раннем детстве мог бы породить, как аллометрический эффект развития мозга, популяции, в которых мог появиться случайный Леонардо". Вильямс однако не рассматривал аллометрию как оружие против адаптивных объяснений. Чувствуется, что он был справедливо менее лоялен к его особенной теории гипертрофии мозга, чем к общему принципу, изложенному в его заключительном риторическом вопросе: "не правда ли, нашему пониманию человеческого разума очень помогло бы знание задачи, для которой он был предназначен?".
Сказанное об аллометрии применимо также и к плейотропии — феномену влияния одного гена на несколько фенотипических эффектов. Это — третье из предложенных ограничений на совершенствование, который хочу описать до того, как приведу мой главный список. Она уже была упомянута в моей цитате Райта. Возможная путаница здесь проистекает из того, что плейотропия используется как оружие с обеих сторонам этих дебатов, если конечно это настоящие дебаты. Фишер (1930b) говорил, что вряд ли какой-нибудь фенотипический эффект гена может быть нейтрален, настолько маловероятно то, что все плейотропные эффекты этого гена будут нейтральны. Левонтин (1979b) с другой стороны отметил, что "многие изменения признаков — более результат плейотропного действия гена, а не прямой результат отбора самого признака. Жёлтый цвет мальпигиевых трубочек у насекомого сам по себе не может быть предметом естественного отбора, так как этот цвет никому не может быть виден. Скорее это следствие плейотропного действия гена, управляющего метаболизмом красного пигмента глаз, который уже может быть адаптивен". Здесь нет никакого реального противоречия. Фишер говорил о селективных воздействиях на генетическую мутацию, а Левонтин — про селективное воздействие на фенотипический признак; между ними та же разница, про которую я говорил при обсуждении нейтралитета в смысле биохимических генетиков.
Позиция Левонтина насчёт плейотропии связана с другой, к который я приду ниже, говоря о проблеме определения того, что он называет естественными "линиями швов", "фенотипическими единицами" эволюции. Иногда множественные эффекты гена в принципе неотделимы; это различные представления одного и того же предмета, как Эверест обычно имеет два названия, в зависимости от того, с какой стороны на него смотреть. То, что биохимик видит как молекулу для переноса кислорода, этолог отметит как красный пигмент. Но есть более интересный вид плейотропии, когда два фенотипических эффекта мутации отделимы. Фенотипический эффект любого гена (противостоящий его аллелям) — не свойство его одного, но также и эмбрионального контекста, в котором он действует. Это порождает избыточные возможности по изменению фенотипических эффектов одной мутации другими, и служит основанием таких уважаемых идей, как теория эволюции доминантности Фишера (1930a), теории старения Медавара (1952) и Вильямса (1957), а также теория инертности Y-хромосомы Гамильтона (1967). В этой связи, если мутация влечёт один полезный эффект и один вредный, то почему бы отбору одобрить гены-модификаторы, которые разделят эти два фенотипических эффекта, или уменьшат вредный эффект при усилении полезного? Как и в случае с аллометрией, Левонтин использовал слишком статичное представление о работе гена, рассматривая плейотропию как свойство этого гена, а не результат взаимодействия между геном и его (поддающимся изменению) эмбриональным контекстом.
Это подводит меня к собственной критике наивного адаптационизма, к моему собственному списку ограничений на совершенствование, списку, который имеет много общего с таковыми у Левонтина и Кейна, Мейнрада Смита (1978b), Остера и Уилсона (1978), Вильямса (1966), Курио (1973) и других. И верно — здесь есть гораздо больше согласия, чем можно предположить исходя из полемического тона недавних критических выступлений. Я не буду углубляться в конкретные случаи, кроме как для примера. Кейн и Левонтин подчёркивали, в этом нет общего намерения бросать вызов нашей изобретательности в выдумывании возможных выгод в конкретных странных поступках животных. Здесь мы ставим более общий вопрос — о том, что теория естественного отбора дает нам право предполагать. Моё первое ограничение на совершенствование — очевидно; его упоминают большинство авторов, пишущих про адаптации.