Глава 18 

ЭТА НАУКА СТОИЛА БОРЬБЫ

Этапы генетики.- Великие открытия, потрясшие биологию.- Связь с практикой.- Проблемы человека и генетика

Деятельное участие в борьбе за нравственные устои науки, за правду, за истинную науку, за ее служение народу составляет величайшее счастье ученого. Часто спрашивают: нравственна ли сама наука, или она лишена какой-либо окраски добра и зла? Может, будучи незрячей, как Фемида, мертвой в нравственном смысле, наука одинаково служит и плохому и хорошему? Я не могу с этим согласиться.

Красота движения в ее внутренней организации свойственна материк. Ученый, познавая материю, пытливо прикасается к тайне мироздания, это возвышает его. Наука - это дитя разума человека, итог развития производительных сил и одновременно зерно будущего. Она не существует отдельно от духовного мира человека. Познание возвышает ученого и окрашивает его добром. Наука становится прекрасным сонмом законов об объективной действительности, руководством к управлению силами природы.

Красота и добро в науке непременно содержатся в работах больших ученых. Читая эти работы, вы видите красоту движения, познания, красоту мира, силу мысли - испытующей, мятежной, критической и вместе с тем благоговейной. Конечно, в последнем счете добро и зло в науке решают социальные условия, в которых творит ученый. Строй капитализма связан с войной, и, увы, несмотря на могущество науки в ряде стран капитализма, некоторые ученые этих стран, хотя им кажется, что это не так, все же находятся в плену сил войны. Существование человечества в условиях вечного мира - это органическая основа жизни человека при социализме. Задача ученого состоит в том, чтобы отдавать свой талант расцвету личности в народных массах, развитию производительных сил человечества. Прорывы ученых в тайны вселенной должны вооружать жизнь на земле, а не сеять смерть.

Думая о генетике, можно сказать, что эта наука в наши дни превратилась в громадную цветущую область. Перед нею открыты необозримые горизонты будущего познания тайны жизни и многообразных связей с жизнью общества, с производственной деятельностью людей.

В начале века в классических опытах по гибридизации открыто существование генов, основных единиц наследственности. В 20-х годах создана хромосомная теория, суть которой состоит в доказательстве, что гены связаны с хромосомами ядра клетки. После этого на протяжении 30 лет шел период громадного накопления фактов, который сопровождался прорывами по целому ряду направлений. В эту эпоху на весь мир прогремели достижения Н. И. Вавилова, Н. К. Кольцова, С. С. Четверикова, Г. Д. Карпеченко, А. С. Серебровского и других советских ученых.

Гигантский взрыв, изменивший лицо генетики, произошел в 1953 году, когда была установлена молекулярная природа явлений наследственности. Еще в прошлом веке показано, что хромосомы содержат белок и нуклеиновую кислоту. Молекулярная структура нуклеиновых кислот оказалась тем субстратом, в котором сосредоточена, или, как говорят иначе, записана, наследственная информация, передающаяся как факел жизни от родителей к детям в каждом поколении. Дезоксирибонуклеиновая кислота (ДНК) имеет генетически пассивную часть, которая составляет ее скелет и собственно генетический материал, а в нем сосредоточены сведения о наследственных свойствах организмов. Эта генетическая часть молекулы ДНК оказалась исключительно простой по своему содержанию и строению. Она имеет всего лишь четыре качественно различных строительных кирпича. Этими кирпичами служат азотистые основания - цитозин, гуанин, аденин и тимин.

Обнаружение молекулярной природы такого фундаментального свойства жизни, как наследственность, явилось переломным для биологии. Это открытие послужило источником, от которого взяла свое начало молекулярная генетика и молекулярная биология в целом.

В свете данных этих новых наук много сокровенных сторон жизни потеряли для ученых былую таинственность. Таинственными были основы, на которых зиждется размножение клетки и передача информации при размножении организмов. В чем суть программирования при индивидуальном развитии, когда от одной клетки в виде оплодотворенного яйца после целенаправленных процессов возникает взрослая особь. Стало ясным, что для осуществления всех этих явлений служат структуры и процессы, обеспечивающие передачу по клеточным поколениям всей полноты наследственной информации. Одновременно нельзя забывать, что генетические структуры создавались на протяжении всей истории вида, что они служат основой для его существования и базой для его эволюции в будущем.

Стало очевидным, что, если наследственность записана в молекулах нуклеиновых кислот, следовательно, в основе размножения генетического материала лежит размножение молекул. Именно этот принцип был четко сформулирован в гипотезе Н. К. Кольцова еще в 1928 году, когда он выдвинул мысль, что наследственные молекулы размножаются матричным путем. Он полагал, что исходная материнская молекула служит матрицей, по подобию которой в клетке строится копия, полностью повторяющая структуру исходной молекулы. Н. К. Кольцов, как и его современники, считал, что молекулярной основой наследственности служит белок. Теперь оказалось, что наследственность записана в молекулах ДНК. Понимание механизма матричного катализа конкретно приняло другой вид.

Молекула ДНК состоит из двух цепей, которые связаны между собою непрочными водородными связями. При размножении молекулы эти связи рвутся, и цепи освобождаются одна от другой. В каждой цепи все азотистые основания обладают силами притяжения парных к нему, комплементарных оснований. Запас таких оснований имеется в цитоплазме клетки. Они подходят к однонитевой молекуле ДНК и входят в состав строящейся, второй нити. Так из одной двойной молекулы ДНК возникают две дочерние двойные молекулы. По закону комплементарности при синтезе дочерних молекул каждая из них целиком повторяет исходную. При делении клетки нет материнской и дочерней молекулы. В каждую из двух новых, образующихся молекул попадает половинка разделившейся материнской молекулы, что и приводит к молекулярному равенству как материнской, так и обеих дочерних молекул. Все они обладают равноценной генетической информацией.

Раскрытие природы удвоения (ауторепродукции) молекул ДНК было гигантским шагом в истории новой биологии. Наступила эпоха изучения и вмешательства в глубины молекулярной механики размножения живого.

Однако какие особенности молекулы ДНК обеспечивают специфику наследственности вида и наследственные индивидуальные особенности особи? В молекуле ДНК имеется только четыре разных азотистых основания - А, Т, Г, Ц. Это указывало, что генетическое содержание молекул основано на специфике их взаимоположения, то есть на разных порядковых сочетаниях азотистых оснований вдоль линейной структуры этой молекулы. Было показано, что ген - это отрезок молекулы ДНК, в котором в среднем содержится около 1000 азотистых оснований. Эти основания линейно расположены в строго специфическом порядке, свойственном каждому гену. Картина дробимости гена и его внутренний линейный план предстали перед исследователями воочию на внутримолекулярном уровне. Запись биологической информации в молекуле ДНК была разгадана как особая форма кода. Под кодом понимается запись сложного содержания с помощью простых символов. Так, например, азбука Морзе содержит только два знака в виде тире и точки, и при этом, комбинируя эти две буквы кода, с помощью телеграмм можно передать любую мысль человека. Генетическая программа записывается с помощью четырехбуквенного кода. Азотистые основания через комбинации в их взаиморасположениях создают биологическую специфичность вида и особи.

Вполне понятно, что в свете этих данных новое содержание получила и теория мутаций. Наследственность организмов относительно устойчива. Но столь же характерна для живого и его изменчивость, без чего не было бы эволюции организмов. Эта изменчивость в исходном ее виде представлена появлением уклонений в отдельных признаках. Так, например, среди обычных рыжих лисиц появляется белая, среди обычно вирулентных форм вируса вдруг возникает особенно злокачественная форма, среди высоких пшениц возникает карлик и т. д. Такое появление изменений получило название мутаций. Проникнуть в тайну их природы долго не удавалось. Теперь в свете молекулярных основ наследственности стало очевидным, что природа мутаций коренится в химических преобразованиях молекул ДНК. При мутации изменяется то или иное азотистое основание в данном ее отрезке (в гене), что дает новые особенности генетической информации. Представим, что в отрезке одной нити молекулы ДНК имеется такой порядок оснований: АТТЦГААЦ. Во время синтеза, в результате ошибки, одно из оснований незаконно внедрится в молекулу, и она после синтеза примет такой вид: