Типичный нейрон позвоночного способен передавать нервные импульсы на значительные расстояния. У изображенного здесь нейрона все части увеличены пропорционально. Импульсы возникают в теле клетки и распространяются вдоль аксона, который имеет одну или несколько ветвей. Этот аксон, который для удобства изображен в виде гармошки, в действительности имеет в длину 1 см. Бывают аксоны длиной более 1 м. Конечные ветви аксона образуют синапсы более чем на 1000 других нейронов. Большинство синапсов связывает аксонные окончания одного нейрона с дендритами, образующими "дерево" вокруг клеточного тела другого нейрона. Таким образом, дендриты, окружающие нейрон на этой схеме, могли бы получать входные сигналы от десятков, сотен и даже тысяч других нейронов. Многие аксоны, такие, как этот, снабжены изолирующей миелиновой оболочкой, прерывающейся через определенные интервалы участками, называемыми перехватами Ранвье.

Тело нейрона содержит общий для всех клеток генетический материал и сложный метаболический аппарат. Однако в отличие от большинства других клеток нейроны после завершения эмбрионального периода не делятся; исходный их запас должен служить в течение всей жизни организма. От тела клетки отходит несколько дендритов и один аксон. Тело клетки и дендриты покрыты синапсами - бляшкообразными структурами, через которые поступает информация от других нейронов. Митохондрии снабжают клетку энергией. Белки синтезируются на эндоплазматическом ретикулуме. Транспортная система перемещает белки и другие вещества от тела клетки к тем местам, где они требуются.

В области синапса аксон обычно расширяется, образуя на конце пре-синаптическую бляшку, которая является передающей информацию поверхностью контакта. Концевая бляшка содержит мелкие сферические образования, называемые синаптическими пузырьками, каждый из которых содержит несколько тысяч молекул химического медиатора. По прибытии в пресинаптическое окончание нервного импульса некоторые из пузырьков выбрасывают свое содержимое в узкую щель, отделяющую бляшку от мембраны дендрита другой клетки, предназначенного для приема таких химических сигналов. Таким образом, информация передается от одного нейрона другому с помощью некоторого посредника, или медиатора. Импульсация нейрона отражает активацию воздействующими нейронами сотен синапсов. Некоторые синапсы являются возбуждающими, т. е. они способствуют генерации импульсов, тогда как другие - тормозные - способны аннулировать действие сигналов, которые в их отсутствие могли бы возбудить разряд нейрона.

Синапс - это место переключения, в котором происходит передача информации от одного нейрона к другому с помощью химических медиаторов. Синапс состоит из двух частей: бляшкообразного утолщения, принадлежащего окончанию аксона, и рецепторной области на поверхности другого нейрона. Мембраны разделены синаптической щелью шириной около 200 нм. Молекулы химического медиатора, запасенные в пузырьках аксонного окончания, выделяются в щель под действием приходящих нервных импульсов. Медиатор изменяет электрическое состояние воспринимающего нейрона, увеличивая или уменьшая вероятность генерации этим нейроном импульса.

Хотя нейроны и являются строительными блоками мозга, это не единственные клетки, которые в нем имеются. Так, кислород и питательные вещества поставляются плотной сетью кровеносных сосудов. Существует потребность и в соединительной ткани, особенно на поверхности мозга. Один из важных классов клеток центральной нервной системы составляют глиальные клетки, или глия. Глия занимает в нервной системе практически все пространство, которое не занято самими нейронами. Хотя функция глии пока не вполне изучена, по-видимому, она обеспечивает структурную и метаболическую опору для сети нейронов.

Синаптическое окончание занимает большую часть этой электронно-микроскопической фотографии, полученной Дж. Хойзером из Университета калифорнийской медицинской школы в Сан-Франциско и Т. Ризом из Национальных институтов здравоохранения. Щель, отделяющая пресинаптическую мембрану от постсинаптической, проходит вдоль нижней части фотографии. Крупные, темные структуры - это митохондрии; многочисленные округлые тела пузырьки, содержащие медиатор; расплывчатые темные участки, расположенные вдоль щели, предположительно являются основными местами выделения медиатора.

Еще одним типом клеток, повсеместно встречающихся в нервной системе, являются шванновские клетки. Оказывается, все аксоны заключены в оболочку из шванновских клеток. В некоторых случаях шванновские клетки просто окутывают аксон тонким слоем. Во многих же случаях в ходе эмбриогенеза шванновская клетка закручивается вокруг аксона, образуя несколько плотных слоев изоляции, называемой миелином. Миелиновая оболочка прерывается примерно через каждый миллиметр по длине аксона узкими щелями - так называемыми перехватами Ранвье. В аксонах, имеющих оболочку такого типа, распространение нервного импульса происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энергии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные.

Нейроны способны выполнять свою функцию только благодаря тому, что их наружная мембрана обладает особыми свойствами. Мембрана аксона по всей его длине специализирована для проведения электрического импульса. Мембрана аксонных окончаний способна выделять медиатор, а мембрана дендритов реагирует на медиатор. Кроме того, мембрана обеспечивает узнавание других клеток в процессе эмбрионального развития, так что каждая клетка отыскивает предназначенное ей место в сети, состоящей из 1011 клеток. В связи с этим многие современные исследования сосредоточены на изучении всех тех свойств мембраны, которые ответственны за нервный импульс, за синаптическую передачу, за узнавание клеток и за установление контактов между клетками.