Изменить стиль страницы

В областях планеты, удаленных от полюсов, Солнце восходит и заходит с обычной частотой, соответствующей времени оборота Нептуна вокруг своей оси. Вот в этом он оказался намного проворнее Земли – сутки на нем длятся всего лишь 16 часов 7 минут. Поэтому за свой год Нептун успевает сделать 89 630 оборотов вокруг оси, то есть именно столько нептунских дней в его году! Таким образом, каждый из сезонов длится примерно по 22 400 нептунских суток.

Расположенный в 30 раз дальше от Солнца, чем Земля, Нептун не виден невооруженным глазом, поэтому он долгое время и оставался неизвестным. С его открытием наука получила очень важное звено для понимания того, как сформировались планеты Солнечной системы. В сравнительной планетологии, науке о геологическом строении планет, Нептун, как и его «близнец» Уран, занимает промежуточное положение между планетами земной группы и газовыми гигантами – Юпитером и Сатурном, которые иногда даже называют несформировавшимися звездами. При образовании Солнечной системы наименее летучие химические элементы остались в нагретых окрестностях Солнца, и из них создались Меркурий, Венера, Земля, Луна и Марс – планеты с большой плотностью, среди которых есть даже имеющие железное ядро. Летучие, легкие химические элементы были вынесены во внешнюю область Солнечной системы, где из них возникли газовые планеты-гиганты – Юпитер и Сатурн. А на наиболее холодной окраине сконденсировались газово-ледяные Уран и Нептун, которые тоже называют планетами-гигантами, хотя они по диаметру в 2—3 раза меньше Юпитера и Сатурна, но все-таки в 4 раза больше Земли.

Ураганы в царстве холода

Толщина газовой оболочки вокруг Нептуна достигает нескольких тысяч километров – от пяти до восьми, по разным расчетам. В ее составе 80% водорода, 19% гелия и 1% метана. Метан хорошо рассеивает синие лучи, что придает Нептуну цвет, вполне соответствующий его «морскому» названию – синий со слабым зеленоватым оттенком. Динамика атмосферы Нептуна весьма активная, несмотря на то что планета расположена очень далеко от Солнца и получает от светила в 900 раз меньше энергии на единицу площади, чем Земля. Температура на внешней поверхности облаков чрезвычайно низкая – всего лишь –214°С. Однако Нептун излучает в пространство энергии в 2,5 раза больше, чем ему достается от Солнца. Это свидетельствует о том, что внутри планеты происходит выделение энергии. О причине такого процесса четкого суждения нет – это может быть либо естественный радиоактивный распад в породах каменного ядра Нептуна, либо высвобождение гравитационной энергии, если его недра все еще сжимаются в продолжающемся процессе формирования планеты. В любом случае атмосфера нагревается изнутри и находится в постоянном движении. Ветры дуют с запада на восток, перенося воздух в направлении, параллельном экватору. Вблизи полюсов их скорость намного больше, чем около экватора. Удивительно, что у планеты, атмосфера которой с наружной стороны самая холодная в Солнечной системе, скорости ветров – самые большие. Не последнюю роль в этом играют и низкие температуры, уменьшающие вязкость газов, образующих атмосферу, а также быстрое вращение самой планеты. На Нептуне ветры достигают ураганной силы, перемещаясь со скоростью до 2 000 км/ч (560 м/с). На Земле ураганом считается ветер, скорость которого превышает 30 м/с. Такие ветры оказались большим сюрпризом для ученых, предполагавших до полета «Вояджера», что холодная атмосфера Нептуна представляет собой малоподвижное «сонное царство», а вместо этого обнаружился бушующий мир ураганов. Наиболее крупные атмосферные вихри на Нептуне достигают нескольких тысяч километров в поперечнике. На общем светло-синем фоне планеты эти образования имеют вид овалов очень темного, густо-синего цвета, за что получили название «темных пятен». Они возникают в атмосфере на определенное время, иногда достаточно длительное – несколько месяцев или даже лет, а затем постепенно рассасываются и исчезают. Самый крупный из наблюдавшихся до сих пор ураганов, названный Большим Темным пятном, располагался в южном полушарии Нептуна в 1989 году, когда около планеты пролетала станция «Вояджер-2». Диаметр этого вихря превышал диаметр нашей Земли. На снимках хорошо видны детали строения громадного урагана – темная центральная часть и окаймляющее ее светлое кольцо облаков, постоянно движущихся по кругу с гигантской скоростью. Это был огромный вихрь, в центре которого виднелись глубинные, более темные слои атмосферы Нептуна. Пять лет спустя на снимках, сделанных с околоземной орбиты космическим телескопом «Хаббл», Большого Темного пятна обнаружено не было: этот ураган либо затих, либо оказался закрыт сверху сплошной облачной пеленой. Для всех темных пятен в атмосфере Нептуна характерна яркая белая кайма с приполярной стороны. Это, скорее всего, метановый иней на наиболее холодных участках облаков.

Ледяная твердь

О внутренней структуре Нептуна известно не так уж много, ведь судить о ней можно только на основе косвенных данных, поскольку сейсмического зондирования этой планеты не проводилось. Диаметр Нептуна – 49 600 км – почти в 4 раза больше, чем у Земли, а его объем превышает земной в 58 раз. Но вот по массе Нептун лишь в 17 раз больше Земли. Из этих данных определено, что средняя плотность Нептуна составляет около трети земной – всего лишь 1,6 г/см3, то есть примерно в полтора раза больше, чем у воды. Низкие плотности характерны для всех четырех планет-гигантов – Юпитера, Сатурна, Урана и Нептуна. Причем первые два – наименее плотные, они состоят преимущественно из газов, а более плотные «близнецы» Уран и Нептун – в основном изо льдов. По расчетам, в центре Нептуна должно находиться каменное или железокаменное ядро диаметром в 1,5—2 раза больше нашей Земли. Основную часть Нептуна составляет расположенный вокруг этого плотного ядра слой толщиной около 8 000 км, состоящий главным образом из водных, аммиачных и метановых льдов, к которым, возможно, примешан и каменный материал. По расчетам, температура в этом слое должна с глубиной увеличиваться от +2 500 до +5 500°С. Однако лед при этом не испаряется, поскольку он находится в недрах Нептуна, где давление в несколько миллионов раз выше, чем атмосферное давление на Земле. Такие чудовищные «объятия» прижимают молекулы друг к другу, удерживая их от разлетания в стороны и испарения. Вероятно, вещество там находится в ионном состоянии, когда атомы и молекулы «раздавлены» на отдельные заряженные частицы – ионы и электроны. Конечно, трудно вообразить себе подобный «лед», поэтому иногда этот слой Нептуна называют «ионным океаном», хотя представить его в виде обычной жидкости также весьма затруднительно. Затем следует третий слой – внешняя газовая оболочка толщиной около 5 000 км. Эта атмосфера, состоящая из водорода и гелия, переходит в ледяной слой постепенно, без резко выраженной границы, по мере того, как плотность вещества увеличивается под давлением вышележащих слоев. В глубоких частях атмосферы газы преобразуются в кристаллы, своего рода иней. Этих кристаллов в более глубоких слоях становится все больше, и они начинают напоминать пропитанную водой снеговую кашу, а еще глубже – полностью преобразуются в лед, находящийся под действием огромного давления. Переходный слой от газовой до ледяной оболочки довольно широкий – около 3 000 км. В общей массе Нептуна на газы приходится 5%, на льды 75%, а на каменный материал 20%.

Азотный мир Тритона

Одно из самых холодных тел в Солнечной системе – это Тритон, наибольший из спутников Нептуна. Достоверные сведения о нем появились лишь в 1989 году после исследований со станции «Вояджер-2». Даже диаметр этого спутника, определенный наблюдениями в телескоп, был сильно преувеличен – вместо 4 000 км он оказался равным 2 700 (это 3/4 диаметра нашей Луны). Вокруг спутника имеется сильно разреженная атмосфера толщиной около 10 км, которая состоит из азота с небольшой примесью метана. Давление этой атмосферы в 70 тысяч раз ниже, чем на Земле. Вместо ожидавшихся морей и озер жидкого азота на Тритоне обнаружилось царство льдов. Значительная территория вокруг его южного полюса покрыта льдом и инеем, поэтому отражает от 70 до 95% падающего на ее поверхность света. Причем льды и иней весьма экзотические – азотные, поскольку температура на этом спутнике чрезвычайно низкая, около –240°С (а азот замерзает при –210°С). Однако Тритон – не просто глыба льда. Средняя плотность этого спутника – 2 г/см3. Поэтому считается, что он состоит из каменного ядра диаметром 2 000 км, окруженного слоем водного льда толщиной 350 км. На Тритоне обнаружены разнообразные формы рельефа, свидетельствующие о его геологической активности в прошлом. Трещины шириной 30 км и длиной до 1 000 км пересекают его поверхность. Еще одна особенность – области, рельеф которых напоминает сетку на кожуре дыни. Подобного нет ни на одном из планетных тел. Эти участки покрыты ячейками поперечником 20—30 км, которые окружены валами высотой 300 метров. Происхождение такого рельефа не вполне ясно. Скорее всего, это результат весьма экзотического криогенного (низкотемпературного) вулканизма, где роль расплавленной магмы играет холодная жидкость, которая поднимается из недр и замерзает на поверхности, образуя причудливые ледяные формы рельефа. Водный лед в условиях Тритона становится очень твердым и ведет себя как каменная горная порода, образуя высокие гряды, крутые склоны, трещины с резкими очертаниями. А вот метановый и азотный льды – пластичные, они расползаются и создают пологий рельеф.