Изменить стиль страницы

STDMETHODIMP GetFromPound(/*[out]*/DOG *pDog)

{

short did = LookupNewDogId();

short hid = LookupHumanId(did);

pDog->nDogID = did;

// allocate memory for embedded pointer

// выделяем память для вложенного указателя

pDog->pOwner = (HUMAN*) CoTaskMemAlloc(sizeof(HUMAN));

if (pDog->pOwner == 0)

// not enough memory

// недостаточно памяти

return R_OUTOFMEMORY;

pDog->pOwner->nHumanID = hid;

return S_OK;

}

Отметим, что метод возвращает специальный HRESULT E_OUTOFMEMORY, указывающий на то, что операция прервана из-за нехватки памяти.

Программа, вызывающая метод GetFromPound, ответственна за освобождение любой памяти, выделенной вызываемым методом, после использования соответствующих значений:

DOG fido;

HRESULT hr = p->GetFromPound(&fido);

if (SUCCEEDED(hr)) {

printf(«The dog %h is owned by %h», fido.nDogID, fido.pOwner->nHumanID);

// data has been consumed, so free the memory

// данные использованы, поэтому освобождаем память

CoTaskMemFree(fido.pOwner);

}

В случае сбоя метода клиент может предположить, что не было выделено никакой памяти, если только в документации не указан другой исход.

В только что приведенном примере использован чистый [out]-параметр. Управление [in, out]– параметрами несколько более сложно. Вложенные указатели для [in, out]-параметров должны быть размещены вызывающей программой с помощью распределителя памяти задачи. Если методу требуется повторно распределить память, переданную клиентом, то метод должен сделать это с использованием CoTaskMemRealloc. Если же вызывающая программа не имеет никакой информации для передачи методу, то она может передать ему на входе нулевой указатель, и тогда метод может использовать CoTaskMemRealloc (который без проблем принимает нулевой указатель и делает то, что нужно). Подобным же образом, если у метода нет информации для обратной передачи в вызывающую программу, он может просто освободить память, на которую ссылается вложенный указатель. Рассмотрим следующее определение метода IDL:

HRESULT SendToVet([in, out] DOG *pDog);

Пусть у вызывающей программы имеется легальное значение HUMAN, которое она хочет передать как параметр. Тогда клиентский код может выглядеть примерно так:

HUMAN *pHuman = (HUMAN*)CoTaskMemAllocc(sizeof(HUMAN));

pHuman->nHumanID = 1522;

DOG fido = { 4111, pHuman };

HRESULT hr = p->SendToVet(&fido); // [in, out]

if (SUCCEEDED(hr)) {

if (fido.pOwner)

printf(«Dog is now owned by %h», fido.pOwner->nHumanID);

CoTaskMemFree(fido.pOwner);

// OK to free null ptr.

// можно освободить нулевой указатель

}

Реализация метода могла бы повторно использовать буфер, используемый вызывающей программой, или выделить новый буфер в случае, если вызывающая программа передала нулевой вложенный указатель:

STDMETHODIMP MyClass::SendToVet(/*[in, out]*/DOG *pDog)

{

if (fido.pOwner == 0)

fido.pOwner = (HUMAN*)CoTaskMemAlloc(sizeof (HUMAN));

if (fido.pOwner == 0)

// alloc failed

// сбой выделения памяти

return E_OUTOFMEMORY;

fido.pOwner->nHumanID = 22;

return S_OK;

}

Поскольку работа с [in,out]-параметрами в качестве вложенных указателей имеет ряд тонкостей, в документации на интерфейс часто повторяются правила управления памятью для вложенных указателей.

Приведенные выше фрагменты кода используют наиболее удобный интерфейс для СОМ-распределителя памяти задач. До появления версии СОМ под Windows NT основная связь с распределителем памяти задачи осуществлялась через его интерфейс IMallос:

[ uuid(00000002-0000-0000-C000-000000000046),local,object]

interface IMalloc : IUnknown {

void *Alloc([in] ULONG cb);

void *Realloc ([in, unique] void *pv, [in] ULONG cb);

void Free([in, unique] void *pv);

ULONG GetSize([in, unique] void *pv);

int DidAlloc([in, unique] void *pv);

void HeapMinimize(void);

}

Для получения доступа к интерфейсу IMalloc распределителя памяти задачи в СОМ имеется API-функция CoGetMalloc:

HRESULT CoGetMalloc(

[in] DWORD dwMemCtx, // reserved, must be one

// зарезервировано, должно равняться единице

[out] IMalloc **ppMalloc); // put it here!

// помещаем его здесь!

Это означает, что вместо вызова удобного метода CoTaskMemAlloc:

HUMAN *pHuman = (HUMAN*)CoTaskMemAlloc(sizeof(HUMAN));

можно использовать следующую менее удобную форму:

IMalloc *pMalloc = 0;

pHuman = 0;

HRESULT hr = CoGetMalloc(1, &pMalloc);

if (SUCCEEDED(hr)) {

pHuman = (HUMAN*)pMalloc->Alloc(sizeof(HUMAN));

pMalloc->Release();

}

Преимущество последней технологии заключается в том, что она совместима с ранними, до Windows NT, версиями СОМ. Но в целом предпочтительнее использовать CoTaskMemAlloc и другие, поскольку эти методы требуют меньше программного кода и поэтому меньше подвержены ошибкам программирования.

До сих пор обсуждение распределителя памяти задачи было сфокусировано на вопросах, как и когда объекты выделяют память, а клиенты – освобождают ее. Однако не обсуждалось, что происходит, когда объект и клиент размещаются в различных адресных пространствах. Это во многом связано с отсутствием различия в способах реализации клиентов и объектов при использовании интерфейсных маршалеров. СОМ-распределитель памяти задачи получает свою память из закрытого адресного пространства процессов. С учетом этого сокрытие того обстоятельства, что распределитель памяти задачи не может охватить оба адресных пространства, является делом интерфейсной заглушки и интерфейсного заместителя. Когда интерфейсная заглушка вызывает метод объекта, она маршалирует любые [out]– или [in, out]-параметры в ответное ORPC-сообщение. Как показано на рис. 7.1, по завершении этого маршалинга интерфейсная заглушка (которая в конечном счете является внутриапартаментным клиентом данного объекта) освобождает с помощью метода CoTaskMemFree любую память, выделенную вызываемой программой. Это эффективно освобождает всю память, выделенную в течение вызова метода внутри адресного пространства объекта. При получении ответного ORPC-сообщения интерфейсный заместитель с помощью метода CoTaskMemAlloc выделяет пространство для всех параметров, размещаемых в вызываемой программе.

Сущность технологии СОМ. Библиотека программиста fig7_1.jpg

Когда эти блоки памяти освобождаются настоящим клиентом с помощью CoTaskMemFree, это эффективно освобождает всю память, выделенную в результате вызова метода, внутри адресного пространства клиента.

Поскольку программисты печально известны своим пренебрежением к освобождению памяти, иногда бывает полезно следить за активностью распределителя памяти задачи в процессе (или отсутствием таковой активности). Для обеспечения этого контроля СОМ предлагает подключить к распределителю памяти задачи определяемый пользователем шпионский объект (spy object), который будет уведомляться до и после каждого вызова распределителя памяти. Этот шпионский объект, определяемый пользователем, должен реализовать интерфейс IMallocSpy:

[ uuid(0000001d-0000-0000-C000-000000000046),local,object ]

interface IMallocSpy : IUnknown {

ULONG PreAlloc([in] ULONG cbRequest);

void *PostAlloc([in] void *pActual);

void *PreFree([in] void *pRequest,[in] BOOL fSpyed);

void PostFree([in] BOOL fSpyed);

ULONG PreRealloc([in] void *pRequest,[in] ULONG cbRequest,

[out] void **ppNewRequest,[in] BOOL fSpyed);

void *PostRealloc([in] void *pActual, [in] BOOL fSpyed);

void *PreGetSize([in] void *pRequest, [in] BOOL fSpyed);

ULONG PostGetSize([in] ULONG cbActual,[in] BOOL fSpyed);

void *PreDidAlloc([in] void *pRequest, [in] BOOL fSpyed);

int PostDidAlloc([in] void *pRequest, [in] BOOL fSpyed, [in] int fActual);