Изменить стиль страницы

Мощь квантовых вычислений обусловлена способностью квантовых битов, или "кубитов" - единицы квантовой информации - делать больше того, что делается в классических компьютерах, которые чередуют ноль и единицу. Кьюбиты способны существовать в состоянии "ноль" и "один" - и в обоих состояниях одновременно. Этот дополнительный режим называется "суперпозицией", математической комбинацией 0 и 1. Это ключ к тому, чтобы сделать кьюбиты более мощными, чем обычные биты. Но сами по себе кубиты не могут обеспечить огромную вычислительную мощность, которую обещают квантовые вычисления. Квантовые биты должны быть "спутаны". Квантовая запутанность - это весьма контринтуитивное явление, которое возникает, когда два кубита в суперпозиции находятся в таком состоянии, что определенные операции над одним из них оказывают мгновенное воздействие на другой, независимо от разделяющего их расстояния. Это дает квантовому компьютеру огромное преимущество перед традиционным компьютером, которому необходимо считывать и записывать из каждого элемента памяти отдельно, прежде чем работать с ним. Другими словами, когда кубиты запутаны, работа с одним кубитом подразумевает работу, в той или иной степени, со всеми теми кубитами, которые запутаны вместе с ним. Алгоритмы квантовых компьютеров используют запутанные кубиты и их суперпозицию для создания кратчайшего пути в вычислениях. Это позволяет им выполнять невероятно сложные вычисления на скоростях, намного превышающих возможные сегодня, и решать определенные классы задач, которые не под силу даже самым современным суперкомпьютерам.

Квантовые вычисления начинаются с выбора алгоритма для решаемой проблемы. Вычисления выполняются с помощью квантово-механических законов, действующих на наложенных друг на друга и запутанных кубитах. Результатом является огромное увеличение сложности программирования, которое может быть выполнено, по крайней мере, для определенных типов проблем.

Чтобы получить представление о мощности квантовых вычислений, подумайте о том, что для современных компьютеров добавление одного бита к классическому компьютерному чипу оказывает незначительное влияние на его вычислительную мощность. Добавление одного кубита удваивает мощность квантового компьютерного чипа. Классический компьютерный чип с 300 битами может обеспечить работу базового карманного калькулятора. Чип с 300 кубитами, с другой стороны, обладает вычислительной мощностью двух новемвигинтиллионов битов - двойки, за которой следует девяносто нулей, или десять до девяностой степени - число, превышающее количество атомов в известной Вселенной.

Последствия

Хотя квантовые компьютеры не идеальны для всех вычислительных задач, для некоторых они могут обеспечить экспоненциальное увеличение скорости, учитывая, что их преимущество над классическим компьютером увеличивается с сильно нелинейной скоростью с размером задачи. Например, классические компьютеры не могут моделировать поведение атомов и электронов во время химических реакций, поскольку они управляются квантовой механикой, сложность которой слишком велика для классических компьютеров. Если КК станет практичным, он, вероятно, будет использоваться для моделирования новых молекул и химических реакций, что поможет определить вещества, которые могут быть использованы для широкого круга целей, таких как конструирование более легких частей самолетов, создание более эффективных лекарств и разработка лучших батарей.

Поэтому неудивительно, что немецкие автопроизводители Daimler и Volkswagen исследуют квантовые вычисления с конечной целью улучшить химический процесс в батареях для своих электромобилей, а Microsoft изучает возможности использования квантовых вычислений для определения способов извлечения углекислого газа из атмосферы, чтобы компенсировать глобальное потепление.

С точки зрения национальной безопасности, квантовые компьютеры идеально подходят для взлома кодов - проникновения в математику, которая лежит в основе шифрования, защищающего военные коммуникации, а также критическую инфраструктуру страны, такую как онлайн-коммерция, включая банковские операции и покупки. Как упоминалось ранее, эти транзакции защищены с помощью алгоритма, который использует факторизацию, или обратное умножение, огромного числа, обычно длиной в несколько сотен цифр. Это "запирает" зашифрованные данные. Такая форма шифрования работает потому, что даже самым современным компьютерам потребовались бы годы, чтобы найти два простых множителя в основе зашифрованных данных. Теоретически, квантовый компьютер может быстро взломать это шифрование.

Последствия для безопасности при взломе текущих зашифрованных данных очень глубоки. Хотя в настоящее время квантовые процессоры еще не обладают такими возможностями, правительства и корпорации не сбрасывают со счетов возможность того, что они появятся в недалеком будущем. Национальный институт стандартов и технологий США уже оценивает новые системы шифрования для "квантовой защиты" интернета. В то же время многие национальные разведывательные службы собирают и архивируют перехваченные зашифрованные сообщения, ожидая появления квантовых вычислений, которые позволят им воскресить эти сообщения и, возможно, превратить их в ценные разведданные.

Учитывая способность квантовых компьютеров манипулировать огромными массивами данных и выявлять закономерности, которые ускользают от классических компьютеров, их потенциал для помощи в разработке и совершенствовании алгоритмов машинного обучения представляется огромным. Как отмечает физик Йоханнес Оттербах, «существует естественная комбинация между присущей квантовым вычислениям статистической природой ... и машинным обучением».

Высокая стоимость квантового компьютера, скорее всего, ограничит их применение национальными государствами и крупнейшими мировыми технологическими корпорациями. Если предположить, что услуги квантовых вычислений не будут предоставляться в аренду, то, по крайней мере, на начальном этапе КК вряд ли будут способствовать демократизации разрушения.

Барьеры

Энтузиазм вокруг последних достижений в области квантовых вычислений после трех десятилетий ледникового прогресса весьма значителен. Хармут Невен из Google ожидает, что к 2030 году все машинное обучение будет осуществляться на квантовых компьютерах. Некоторые эксперты предполагают, что к тому времени Google и его ведущие конкуренты будут продавать услуги квантовых вычислений через облако и взимать плату за каждую секунду.

Однако есть и скептики, которые считают, что оптимисты КК слишком много обещают. Один из них - Джерри Чоу, исследователь квантовых компьютеров IBM, который говорит, что QC «немного напоминает попытку уравновесить яйцо на конце иглы. Вы, конечно, можете сделать это, но любое небольшое нарушение от шума, тепла, вибраций, и вы внезапно получаете солнечной стороной вверх». Даже Фейнман предупреждал: "Если вы хотите сделать симуляцию природы, вам лучше сделать ее квантово-механической, и, черт возьми, это замечательная проблема, потому что она не выглядит такой простой". Действительно, на пути создания квантового компьютера и его использования для решения практических задач остаются значительные технические и практические проблемы.

Одним из препятствий является относительно высокий коэффициент ошибок квантового компьютера, который обусловлен шумом. Бит классического компьютера - это либо единица, либо ноль. Даже если значение немного ошибочно из-за шума в системе, современные компьютеры могут отсеивать вариации на своих входах и выдавать чистые, свободные от шума выходы. С кубитами дело обстоит иначе. Недавние исследования показали, что процент ошибок при двухквантовых операциях в системах с пятью и более кубитами превышает несколько процентов. Некоторые энтузиасты утверждают, что проблему можно решить с помощью алгоритмов коррекции ошибок. Но таким алгоритмам потребуются дополнительные кубиты для проверки работы кубитов, выполняющих вычисления. Это чревато путешествием в кроличью нору: по оценкам некоторых экспертов, для проверки работы одного кубита потребуется еще сотня!

Тем не менее, с теоретической точки зрения, ничто не мешает добавить больше кубитов для решения этой проблемы. Решение проблемы ошибок в квантовых вычислениях заключается в формировании логических кубитов с помощью нескольких физических кубитов. Если это так, то для практичного и полезного квантового компьютера потребуется миллион или более кубитов. Достижение этой цели является сложной задачей, поэтому трудно с уверенностью сказать, когда это может произойти.

Другим препятствием является так называемая проблема ввода. В настоящее время не существует метода быстрого преобразования большого количества классических данных в квантовое состояние. Для задач, требующих ввода большого количества данных, время, необходимое для преобразования данных, обычно намного превышает время вычислений, что потенциально нивелирует преимущество квантового компьютера. Хорошая новость заключается в том, что эта проблема исчезает, если данные могут быть сгенерированы алгоритмически. Плохая новость заключается в том, что разработка квантовых алгоритмов также оказывается сложной задачей. Еще одно препятствие связано с разработкой программного обеспечения для квантовых вычислений, а также методов отладки квантового оборудования и программного обеспечения.