Изменить стиль страницы

Таким образом, проблему стратосферного озона, который защищает Землю от ультрафиолетового излучения Солнца, нельзя рассматривать саму по себе, отдельно от всей атмосферы, ее динамики. Благодаря этой динамике многие промышленные выбросы в атмосферу достигают стратосферы и вызывают там разрушение озонного слоя.

Из вышесказанного следует, что для того, чтобы понять, что и в какой мере угрожает слою озона в стратосфере, надо рассмотреть достаточно подробно все указанные вопросы. Только выяснив, за счет чего образуется озон и за счет чего он разрушается (и с какой скоростью), можно понять причины изменения озонного слоя и пути его стабилизации. Особенно тщательно надо остановиться на реакциях, в которых стратосферный озон разрушается, поскольку сейчас уже не вызывает сомнения, что они и угрожают слою полным исчезновением. Имеется очень существенное различие в условиях жизни озона (эффективности его образования и продолжительности жизни и т. д.) не только на разных высотах в атмосфере, но и на разных широтах. Собственно, это неудивительно, поскольку вся околоземная оболочка по своим свойствам различается на разных широтах. Это отличие вызвано не только разной освещенностью атмосферы солнечным излучением. Оно обусловлено также конфигурацией магнитной оболочки Земли — магнитосферы. Магнитное поле Земли не влияет на проникновение к Земле и ее атмосфере солнечного волнового излучения (видимого света, рентгеновского, ультрафиолетового и инфракрасного излучения). Но оно принципиально влияет на движение к Земле солнечных заряженных частиц. Наиболее доступными для этого излучения оказываются те области на Земле, где магнитное поле направлено вертикально или почти вертикально. Известно, что это реализуется в высоких широтах северного и южного полушарий. Именно поэтому в этих областях наблюдаются полярные (северные и южные) сияния. Корпускулярная радиация Солнца зависит от солнечной активности, которая непрерывно меняется. Поэтому условия в атмосфере меняются с изменением солнечной активности. Ясно, что меняется и количество озона.

Таким образом, озон (его концентрация, движение, распределение по высоте и т. д.) зависит не только от земных факторов (естественных и связанных с деятельностью человека — антропогенных), но и от космических. Например, при вторжении в атмосферу высоких широт (в зоне полярных сияний) солнечных заряженных частиц концентрация озона может меняться на десятки процентов. В дальнейшем в результате динамики атмосферы это изменение распространится и на средние и низкие широты.

Из сказанного выше ясно, что слой озона вокруг Земли не является чем-то постоянным, неизменным, одинаковым. Отнюдь нет! Его характеристики очень сильно меняются в зависимости от большого числа факторов. Это и солнечная активность, которая определяет интенсивность потоков солнечных заряженных частиц, и региональные особенности, и свойства подстилающей поверхности, и т. д.

За время измерений озона наблюдались весьма значительные его изменения. Всегда наибольшие изменения общего содержания озона наблюдались в высоких широтах. Так, среднесуточные значения общего содержания в высоких широтах северного полушария (а точнее, в зоне полярных сияний) в весеннее равноденствие могут меняться на 150 %! В низкоширотной зоне (от экватора до 30о северной широты) эти изменения несущественны.

Мы привели только некоторые свойства атмосферного озона, но и из сказанного ясно, насколько важно разделить изменения в озонном слое, вызванные антропогенным влиянием, и изменения, являющиеся последствиями воздействия естественных факторов.

Поэтому в данной книге ставится задача рассказать в доступной любому читателю форме о всех механизмах изменения озонного слоя. Тщательно описываются все возможные последствия антропогенного воздействия на озонный слой. Мы считаем, что эти знания нужны каждому человеку. Если все люди (от рядовых граждан до руководителей государств) будут располагать этими знаниями, то всем нам легче будет осознать истинное положение дел, сложившееся вследствие изменения озонного слоя, и принять своевременные меры для того, чтобы выжить самим и оставить нашим потомкам земной дом пригодным для проживания. Будем стараться быть объективными и излагать факты такими, каковы они есть на самом деле, не преувеличивая их значения. Ведь только так мы добьемся более глубокого осознания этих фактов всеми. Сейчас же пока в научной литературе и прессе преобладают крайности при значительном сужении самой проблемы.

ОЗОН — АТМОСФЕРНЫЙ ГАЗ

Озон по существу является разновидностью кислорода. Имеется атомный кислород — О, молекулярный кислород, каждая молекула которого О2 состоит из двух атомов. Молекула озона О3 состоит из трех атомов кислорода. Но здесь количество переходит в качество — свойства трехатомной молекулы озона принципиально отличаются от свойств двухатомной молекулы О2.

Озон как таковой был открыт в 1839 году немецким химиком Шейнбейном. В приземной атмосфере он был обнаружен в 1873 году, и с тех пор проводятся регулярно его измерения. Наличие озона в верхней атмосфере было установлено восемь лет спустя английским химиком Гартли (в отечественной литературе чаще писали раньше Хартли). Ясно, что в то время прямые измерения в верхней атмосфере были еще недоступны. Наличие там озона было установлено путем анализа характеристик ультрафиолетового излучения Солнца, приходящего к земной поверхности. Принцип этого метода очень прост. Часть излучения задерживается каким-то определенным веществом, в данном случае озоном. По тому, какое именно излучение задержалось (то есть отсутствует), можно сказать, какое вещество его задержало. Если говорить конкретнее, то весь процесс выглядит так.

Атом каждого химического элемента может поглощать излучение только определенных частот. Запасенную таким путем дополнительную энергию атом через какое-то время излучает и переходит вновь в свое основное состояние. Таким образом, имеются частоты поглощения, характерные для данного химического элемента, и частоты излучения. Но вместо термина «частота поглощения» атома употребляют другой, эквивалентный — «линия поглощения». Этот термин родился вместе с рождением приборов для измерения частот поглощения — спектрографов. В этом приборе каждая частота вырисована в виде линии. Отсюда и такой термин. Прибор назван спектрографом, поскольку он вырисовывает спектр (набор) всех частот поглощения. С помощью спектрографа можно получить спектр поглощения любого химического вещества. А затем можно по спектрам поглощения устанавливать, какому веществу принадлежит этот спектр. Спектр поглощения вещества мы можем получать на любом расстоянии, которое способно преодолеть излучение. Естественно, что можно регистрировать и спектры веществ, находящихся в верхней атмосфере Земли. Таким путем и было открыто наличие в верхней атмосфере озона.

До сих пор мы говорили о линиях поглощения и излучения. Это справедливо, когда речь идет об отдельных атомах.

Если же атомы объединены в сложные молекулы, то картина усложняется. Молекула в отличие от атома способна поглощать (и излучать) не только излучение с дискретными длинами волн, но и излучение, длины волн которого занимают определенный диапазон, от одной длины волны до другой. Спектрограф в этом случае будет регистрировать не линии, а целые полосы. Потому, имея дело с веществами в молекулярной форме, говорят не только о линиях, но и полосах поглощения и излучения.

Озон, озонный слой в стратосфере Земли, затрагивает каждого из нас именно потому, что его полосы поглощения приходятся на очень важный диапазон волн солнечного излучения. Известно, что озон поглощает ультрафиолетовое излучение Солнца с длинами волн, которые меньше 300 нм (нанометр равен одной миллиардной доле метра). Наиболее сильно озон поглощает солнечное ультрафиолетовое излучение с длиной 253,65 нм. Это значит, что слой озона толщиной 3 мм (при нормальном давлении и температуре 0оС) способен уменьшить интенсивность излучения на этой длине волны в число раз, равное единице с 40 нулями!