Изменить стиль страницы

Кроме магнитных полей, создаваемых спинами электронов и их орбитальным движением, такие же поля создаются спинами протонов, нейтронов и даже спином атомного ядра как целого. (Почему вращающийся нейтрон, не несущий электрического заряда, создает магнитное поле, остается загадкой и по сей день. К ней мы вернемся несколько позже.) Термин «спин» (вращение) выбран удачно, частицы со спином ведут себя как крошечные гироскопы, которые не поддаются попыткам повернуть их ось. В 1963 году во многих лабораториях велась работа по созданию ядерных гироскопов для управления полетом космических кораблей; эти фантастические гирокомпасы не имеют движущихся частей, и их оси не поворачиваются в пространстве под воздействием трения. Конструкция этих устройств основывается на гироскопических свойствах ядерных частиц со спином.

Этот правый, левый мир i_055.png
Рис. 51. Орбитальный магнитный момент электрона.
Этот правый, левый мир i_056.png
Рис. 52. Спиновый магнитный момент электрона.

Если в атоме оси каких-нибудь двух магнитных моментов направлены параллельно или почти параллельно друг другу и их северные полюса ориентированы в одну сторону, то магнитные поля этих моментов складываются и получается более сильное поле. Если оси антипараллельны (ориентированы в противоположные стороны), то поля компенсируют друг друга и результирующее поле получается слабее или исчезает совсем. Так, например, два электрона в атоме гелия вращаются по одной и той же орбите в противоположных направлениях, и, следовательно, их орбитальные моменты компенсируют друг друга. То же самое относится и к их спиновым магнитным моментам. Один электрон вращается по часовой стрелке, другой — против нее. Говорят, что спины в атоме скомпенсированы. В результате такого взаимного гашения орбитальных и спиновых магнитных полей атом гелия оказывается магнитно нейтральным. В целом у него нет результирующего магнитного момента. Это относится ко всем инертным газам (неон, аргон, криптон, ксенон, радон), у которых внешние оболочки целиком заполнены электронами. Другие атомы обладают результирующим магнитным полем, поскольку внутренние магнитные моменты у них не скомпенсированы. (Говоря научным языком, результирующее магнитное поле является векторной суммой всех внутренних магнитных моментов.) Такой атом обладает общим спином, который и создает результирующее магнитное поле с северным и южным полюсами. Короче говоря, он ведет себя как крошечный сферический магнитик.

Среди атомов всех элементов атом железа обладает самым мощным магнитным полем из-за сильного разбаланса электронных спинов. Каждый атом в железном бруске ведет себя как микроскопический шарообразный магнит с северным и южным полюсами. Каждый атом занимает жестко фиксированное положение в кубической решетке кристалла железа, но вращаться он может, так что его магнитная ось будет поворачиваться в различных направлениях. Намагничивание железного бруска это не что иное, как поворот возможно большего числа атомов таким образом, чтобы их магнитные оси стали параллельными. Поскольку параллельные магнитные моменты усиливают друг друга, у бруска появляется сильное собственное магнитное поле.

Сила этого поля имеет, конечно, свои пределы. Расположение атомов ненамагниченного железного бруска можно сравнить с множеством людей, сидящих в зале и смотрящих в разные стороны. Зал «намагничивается» оратором, который убеждает как можно большее количество людей смотреть в его сторону. Чем больше лиц обращено к нему, тем сильнее «магнитное поле». Поле достигает точки насыщения, когда все в комнате смотрят в одну сторону. Очевидно, что более мощного поля уже не создать.

Многие учебники элементарной физики, в особенности те, что изданы до 1950 года, неправильно описывают процесс намагничивания железного стержня. На одном рисунке изображаются домены внутри ненамагниченного бруска в виде маленьких магнитиков, повернутых во всевозможных случайных направлениях. Рядом изображается намагниченный брусок: все магнитики выстроились и смотрят в одну сторону. Тем самым создается впечатление, будто домены — маленькие кусочки железа, которые на самом деле поворачиваются при намагничивании бруска. Этого не может быть, поскольку каждый атом занимает в решетке кристалла железа постоянное место.

Представьте себе полк солдат, построенный на большом поле в каре с шеренгами внутри. Каждый солдат не имеет права сходить с места, но может поворачиваться в любом направлении. Восемнадцать солдат, стоящих шеренгами по трое, образуют прямоугольник и обращены лицом на север. Группа из восемнадцати солдат за ними, построенная также шеренгами по трое, обращена лицом на юг. Каждая группа изображает определенную область атомов железа. Теперь представьте себе, что вторая группа по команде «кругом» начинает выполнять поворот, но не одновременно, а по шеренгам: сперва самая северная, потом следующая за ней и так далее, пока наконец все солдаты не обратятся лицом на север. По мере того как шеренги выполняют поворот, «граница домена», то есть граница между двумя группами, постепенно смещается к югу, пока оба домена не сольются в одну группу, повернутую на север. Это дает приближенную картину поведения атомов железного бруска в процессе его намагничивания.

Домены в бруске «выстраиваются» не все одновременно. Поэтому магнитное поле бруска усиливается постепенно маленькими последовательными скачками. Если на намагничиваемый брусок намотать проволоку, то каждый такой скачок будет создавать в ней небольшое повышение электрического напряжения. Эти электрические импульсы можно усилить и подвести к репродуктору, тогда они будут восприниматься на слух, как потрескивание, напоминающее шуршание бумаги. Такое явление получило название эффекта Баркгаузена в честь немецкого инженера, который обнаружил его в 1919 году. В Чикагском научно-техническом музее имеется установка, которая дает возможность услышать эффект Баркгаузена. Имея возможность видеть, как небольшой магнитный стержень медленно вдвигается в магнитное поле, вы услышите шуршащий звук, вызываемый скачкообразным движением доменных границ при выстраивании атомов в стержне.

В течение нескольких столетий физиков озадачивало то, что невозможно создать магнитный монополь, то есть магнит с единственным полюсом[41]. Смущало их и то, что, разрезая магнит пополам, они всегда получали такие же магниты, только меньшего размера. Если разрезать половинки, то получатся четыре маленьких магнита, но у каждого будет полный комплект полюсов: северный на одном конце, южный на другом.

Современная теория магнетизма полностью раскрывает обе эти загадки. Представьте себе мысленно магнит в виде цилиндрического стержня с нарисованными на нем маленькими стрелками, как показано на рис. 53. Стрелки указывают направление, в котором вращается большинство электронов в атомах стержня. Именно это суммарное вращение внутри цилиндра делает его магнитом. Если вы посмотрите на цилиндр с одного торца, то увидите вращение по часовой стрелке. Этот торец условились называть северным магнитным полюсом. Посмотрите с другого конца и увидите вращение против часовой стрелки. Этот торец — южный магнитный полюс. Полюса — просто этикетки на энантиоморфных концах этого «вращающегося» в условном смысле цилиндра.

Не трудно догадаться, почему однополюсных магнитов нет и почему любой кусок, вырезанный из магнитного бруска, неизбежно будет иметь северный и южный полюса. Получить однополюсной магнит так же трудно, как вращающийся цилиндр... с единственным торцом. Даже у магнита в форме диска, изображенного на рис. 54, с магнитной осью, перпендикулярной плоскости диска, одна сторона будет северная, а другая — южная. Сделать магнитный диск с двумя северными сторонами все равно, что закрутить колесо так, чтобы оно вращалось по часовой стрелке, с какой стороны на него ни посмотри. Так же невозможно разрезать магнитный брусок пополам, не получив две его точные уменьшенные копии, как разрезать пополам вращающийся цилиндр и не получить двух вращающихся цилиндров.

вернуться

41

Речь идет об однополюсных магнитах, а не о «магнитных монополях», которые, может быть, и существуют. Дирак около тридцати лет назад пришел к заключению, что может существовать элементарная частица, несущая квант положительного или отрицательного магнитного «заряда». С тех пор физики ее ищут, но не находят. Не найдено и причины, по которой такая частица не могла бы существовать. Однако если бы ее нашли, то построить для нее теорию было бы очень трудно, а может быть, и невозможно. — Прим. ред.