Изменить стиль страницы

Проскочив магнитное поле и отметив свой путь вспышками неоновых лампочек, частица врывается в туманную камеру и снова попадает на «этажерку» — теперь это сцена, расслоенная на этажи горизонтальными пластинами из свинца или меди. Зачем здесь нужна многоэтажность, зачем тут помещены пластины?

Вы помните: частица должна остановиться в камере Вильсона, чтобы растратить свою энергию до конца. Пластины помогают ей это сделать: пробиться через миллиметровую толщу свинца стоит частице таких же затрат, как пронизать стометровую толщу воздуха. Не будь пластин, лишь очень слабенькие частицы останавливались бы в туманной камере, остальные прошивали бы ее. насквозь, так и не рассказав физикам о своих энергетических запасах.

Вот мы и подошли к концу лабораторных подробностей, хотя физик сказал бы, что только тут они и начинаются!..

Совершив все, на что обрекли ее исследователи-режиссеры, пройдя, магнитное поле с барьерами счетчиков и остановившись в одной из пластин туманной камеры, частица устало рапортуется правильно сыграла свою роль — честно описала дугу меж магнитных полюсов и честно истратила всю энергию на создание туманного следа, неоновые лампочки еще горят, и след еще не расползся, пожалуйста, снимайте!» И тогда срабатывают затворы съемочных аппаратов: одни аппараты запечатлевают световой пунктир на табло, другие — трассу из тумана в камере Вильсона.

10

Идеи экспериментаторов часто бывают остроумными. Реже обладают они еще и зримой скульптурной отчетливостью. Или графической ясностью. Когда эти черты эксперимента бросаются в глаза, начинаешь думать, что в ученом сидит еще и художник.

Всегда и везде физик требует от своих опытов точности сведений, их однозначности и полноты. Для создания опытной установки современная техника предоставляет в распоряжение ученого массу возможностей — выбирай! Постепенно отпадают варианты ненадежные, дорогостоящие, неосуществимые по каким-нибудь причинам. И все же в конце концов еще остается выбор — можно эдак поставить опыт, а можно так… На чем же остановиться? В этот последний момент, когда все уже взвешено, ученый, наверное, перестает быть только безотказно действующей логической машиной.

В нем просыпается еще и художник. Он вдруг начинает заботиться о таких, бесконтрольных и необязательных вещах, как простота, грация, наглядность и соразмерность… Решительно никто не может с точностью сказать, что это такое? Когда таких качеств нет — в книге ли, в картине, в музыке, в эксперименте, даже в математической формуле, — их отсутствия часто не замечают. Но когда они есть, каждый с радостью чувствует это.

Грация, вероятно, проявляется в минимуме усилий для достижения максимального результата. Примерно так думал Чехов о грации в искусстве. В экспериментах ядерной физики иногда поражает особая грация «экономного чуда» — простота превращения незримого и неслышного в явное и осязаемое. В этом был один из соблазнов рассказывать про Арагац.

Мне хотелось, чтобы и вы, как я, почувствовали не только дух приключений, но и художнический дух в киносъемках на Арагаце. Он там неотразимо присутствует, — поверьте на слово, если вас не убедило рассказанное.

…Годос — по-гречески «путь», скопео — «смотрю». Череда барьеров из счетчиков на пути космической частицы в сочетании со световым табло из неоновых лампочек по праву называется годоскопом — прибором, показывающим путь частицы.

Годоскоп в магнитном поле плюс камера Вильсона — один из вариантов придуманной на Арагаце установки: магнитного масспектрометра Алиханова и Алиханяна. Вариант начала 50-х годов. Это как бы главный съемочный павильон Арагацкой физической киностудии. В его названии отражен весь смысл режиссерской работы тамошних физиков.

Весь смысл! Весь пафос, все надежды, все трудности, вся горечь, все упорство их многолетней работы.

В самом деле, импульс и энергию измеряют на Арагаце не любопытства ради, но с единственной целью — определить возможно точнее массы отдельных частиц. Попутно определяется и скорость как второе неизвестное в системе двух уравнений: импульс — энергия. И к скорости частиц у физиков интерес тоже отнюдь не праздный. Но все-таки скорость — дело второстепенное. Это не постоянное свойство частицы, а только ее богатство, которое можно с равным успехом накопить и потерять. От — скорости природа частиц не зависит: электрон остается электроном, покоится ли он или движется, как человек не становится чем-то другим оттого, что он превращается из пешехода в авиапассажира.

А вот масса покоя частицы — это свойство существенное, постоянное, ненаживное! Так же как электрический заряд, масса покоя определяет саму природу частицы. Или определяется ее природой. Почему это так — физика сегодня объяснить еще не может. Но что это несомненно так, говорит ученым весь опыт изучения микромира, все факты науки.

Разумеется, эта масса покоя относительна, как и сам покой. Остановившись в туманной камере, частица все-таки продолжает лететь вместе с Землей вокруг Солнца со скоростью 30 километров в секунду. Относительно Солнца ее масса покоя иная, чем относительно Земли. Но, измеряя энергию и количество движения частиц в лабораториях, покоящихся на Земле, физики узнают и массу земного покоя пришельцев из космоса.

Частицы сравнивают по их массе, как во времена Менделеева элементы различали по их атомным весам. Конечно, химики изучали и множество других свойств химических элементов и вовсе забывали об атомных весах, когда, скажем, говорили об одних веществах, что они металлы, а о других, что они металлоиды. Так и сегодня — физики уже многое знают про элементарные частицы, а не только величины их масс. Но когда в XIX веке открывали новые элементы, химики прежде всего отвечали на вопрос: «А каков их атомный вес?» В наши дни похожий вопрос начинает терзать физиков, едва возникает надежда, что есть еще неизвестные элементарные частицы материи: «Какова их масса покоя?»

Даже вопрос о заряде частиц отодвигается на второй план, да он и легко разрешим, Главное — «какова их масса покоя?».

Радуга — спектр. В переводе с латыни — «видимое». Основа солнечного спектра в радуге — различие в частоте электромагнитных колебаний световых лучей разного цвета. Так и говорят — «спектр частот». К чему угодно приложимо понятие спектра, лишь бы существовала ясно различимая последовательность величин одного и того же рода: «спектр скоростей», «спектр энергии», «спектр масс».

Когда в начале 40-х годов братья Алиханов и Алиханян начали с большими надеждами свои многолетние исследования состава космических лучей, они, естественно, постарались основать лабораторию в поднебесье — там, где атмосфера еще не настолько разрежена, чтобы трудно было дышать и работать, но где плотность воздуха и его поглотительная способность все же достаточно малы, чтобы на приборы падало гораздо больше космических частиц, чем в земных долинах. И так же естественно они назвали свою экспериментальную установку масспектрометром: их занимал спектр масс в потоке мельчайших пылинок вещества, приходящих на Землю из глубин мирового пространства, и в ливнях других пылинок материи, порожденных в самой земной атмосфере.

И когда мы говорили о «космических гостях», о «пришельцах из космоса», это было не столько точно, сколько красиво: в главном съемочном павильоне на Арагаце может с одинаковым правом самосфотографироваться и частица, действительно пришедшая из далекого далека и вполне земная частица, родившаяся в воздухе или даже в веществе потолка лаборатории. Как это ни странно, но для исследователей «первооснов материи» такие вторичные частицы даже интересней гостей издалека.

Почему? Да потому, что гости издалека — это уже давно — знакомые ученым атомные ядра. В подавляющем большинстве — простейшие водородные ядра, обыкновенные протоны.

Конечно, физикам не сразу стало это известно.

В двадцатых годах думали, что всепроникающие космические частицы — просто очень энергичные фотоны, иначе говоря — гамма-кванты. И только. Их называли даже ультрагамма-фотонами, и кто-то окрестил само космическое излучение ультралучами. Долго бытовало это старое название, в котором так звучно отразилось былое заблуждение исследователей.