Изменить стиль страницы

Аналогично объясняются цветовые послеобразные явления. Цвет из сетчатки сигнализируется в мозг (почти наверняка) всего по трем каналам. Имеется три типа "колбочковых" рецепторов, каждый из которых чувствителен либо к красному, либо к зеленому, либо к синему цвету. Белый свет активирует все три цветовых канала, и определенное соотношение активности трех каналов "означает" белизну. Относительная активность красного света больше в "красном канале", зеленого - в "зеленом канале", синего - в "синем канале". Разные соотношения активности этих трех каналов соответствуют ощущениям всех цветовых оттенков. "Трехканальность" цветовоспринимающей системы зрения обусловила возникновение (да и саму возможность реализации) цветной фотографии и цветного телевидения с помощью трех цветов, грубо соответствующих тем характеристикам света, на которые реагируют три канала цветового зрения человека, три типа ретинальных рецепторов цвета. И если одна или две ретинальные цветовоспринимающие системы адаптированы, то есть утратили часть чувствительности в результате долгой экспозиции к окрашенному свету, то мозг воспримет такой сигнал, который соответствует свету, имеющему окраску, дополнительную к окраске света, вызвавшего адаптацию. Поэтому мы видим дополнительный цвет в послеобразе.

С помощью мощной электронной лампы-вспышки можно создать на сетчатке весьма впечатляющий фотографически детальный послеобраз. После того как вспышка такой лампы осветит темную комнату, еще в течение нескольких секунд комната будет видна во всех деталях и притом настолько живо и четко, что послеобраз может быть ошибочно принят за реальную комнату, пока наблюдатель не переведет взгляд или послеобраз не потускнеет.

Эффекты, связанные с возникновением последовательных образов, объясняются в основном изменением чувствительности в сетчатке; не исключено, однако, что при длительном или сильном воздействии световых раздражителей на глаз наступают некоторые изменения и в проекционных зонах мозга.

Другой эффект, происхождение которого менее ясно, также, по-видимому, связан с состоянием сетчатки - это возникновение цвета под действием мелькающего белого света. Если вы вырежете диск (стр. 215) и станете вращать его (например, на проигрывателе грампластинок), на диске постепенно проступит цвет. В зависимости от скорости и направления вращения диска цвета будут меняться. Перед вами на рис. 61 диск Бэнхема. Автор первоначально получил эффект с черно-белым волчком. Объяснение эффекта заключается скорее всего в том, что три ретинальные системы цветоощущения обладают, если говорить на языке электроники, различными временными константами. Вращающийся диск осуществляет прерывистую стимуляцию рецепторов цвета. Вполне возможно, что рецепторы, чувствительные к красному, зеленому и синему цветам, имеют несколько различающиеся временные константы, и поэтому периодические вспышки света вызывают различную по уровню активность в трех системах цветоощущения, а для мозга такая сигнализация равносильна сигнализации о цвете. Эту иллюзию преодолеть невозможно, так как в обоих случаях сигналы, идущие от глаз, идентичны. Если диск Бэнхема "показать" телевизионной камере, то на экране телевизора также возникнет (объективное) нарушение цветового равновесия. Эти изменения цвета по меньшей мере столь же сильны, как и при прямом наблюдении диска Бэнхема, что объясняется тождеством физических причин обоих эффектов - видимого глазом и "наблюдаемого" телевизионной камерой.

Разумный глаз img_71.jpg

Рис. 61. Диск Бэнхема

Описанные искажения (за исключением, пожалуй, эффектов движения) возникают вследствие адаптации на уровне периферических приемников органов чувств, точнее говоря, из-за того, что сенсорные преобразователи энергии теряют настройку. Что касается работы мозга, получателя информации, то его положение, пожалуй, можно сравнить с положением фотографа, оставившего фотоэкспонометр на солнце, после чего прибор неизбежно утратил свою чувствительность, либо с положением техника, допустившего, чтобы его измерители, расширились под действием высокой температуры. Когда преобразователи и измерители начинают давать иной ответ при воздействии неизменного сигнала, ошибки шкалирования измерений возникнут неизбежно - неверным будет масштаб; такие ошибки могут быть исправлены лишь с помощью другого источника информации, который, кстати, привлекается и в том случае, когда сигналы первого источника слишком маловероятны. Об адаптациях, дающих описанные эффекты, можно сказать, что они являются следствием нарушений калибровки сигналов.

Чрезвычайно странные эффекты возникают при адаптации одного из двух параллельных сенсорных каналов. Например, последействие движения - эффект, возникающий при наблюдении вращающейся спирали, - содержит парадокс: мы видим движение ("расширение") в направлении, противоположном действию адаптирующей стимуляции (это и есть последействие), и в то же самое время мы видим, что спираль не меняется в размерах (как и любой другой объект, наблюдаемый в период последействия). Расширение, происходящее одновременно с сохранением постоянных размеров, - вещь невозможная в мире физических объектов; потому этот эффект парадоксален.

Нечто подобное может произойти и в жизни, например при определении скорости движения автомобиля. Скорость можно вычислить, заметив расстояние, пройденное в определенный промежуток времени; величину скорости можно узнать и по показаниям спидометра. Представьте себе, что вы пользуетесь обоими способами, причем один из приборов - либо спидометр, либо суммарный счетчик пройденного пути - дает неправильные показания. Не зная этого, мы обнаруживаем, что в одно и то же время путешествовали с разной скоростью, а если спидометр просто не работает, то получится, что в одно и то же время мы двигались и стояли на месте. Однако в таких случаях мы приходим к заключению совсем другого рода, то есть предполагаем, что один из приборов дает неверные показания. Мозг же далеко не всегда поступает подобным образом с противоречивой сенсорной информацией: хотя информация, поступающая по параллельным каналам, и содержит иногда противоречие, она учитывается, выступая в восприятии "на равных правах". Таким образом возникают парадоксы, в том числе и те, что приводят к искажению восприятия. Так мы начинаем понимать, что мозг, работающий над интерпретацией сенсорных данных без помощи извне, подобно "засекреченному ученому" существенно ограничен в своих достижениях.

Парадоксы такого рода возникают только в тех случаях, когда информация притекает по различным параллельным каналам. Цветоощущение есть пример одноканальной системы, состоящей из трех видов рецепторов, соотношение активности которых определяет ощущаемый цвет. В этом случае адаптация приводит лишь к изменению цвета, но к парадоксу - никогда. Мы не можем увидеть какой-либо предмет одновременно целиком красным и целиком зеленым - не потому, что реальные предметы никогда не бывают такими (как объяснили это некоторые философы), а потому, что глаз не способен передавать мозгу неоднозначную информацию о цвете.

Названные эффекты искажения имеют периферическое происхождение, так как возникают вследствие изменений чувствительности сенсорных рецепторов - преобразователей притекающей извне физической энергии в нервные сигналы. Явления сенсорной адаптации возникают очень легко, а вызванные ими искажения восприятия чрезвычайно трудно преодолимы и, следовательно, потенциально опасны. Возникает вопрос, не является ли неустойчивость сенсорных преобразователей своего рода слабым звеном физиологической машины. Но, быть может, легкость, с которой наступает адаптация к неизменному физическому воздействию, все же имеет какой-то глубокий смысл? Например, болевые рецепторы сравнительно мало адаптируются (потому-то зубная боль и не притупляется!), значит, адаптация рецепторов - не обязательное явление. Одно из возможных объяснений, которое мы заимствуем из приборостроения, заключается в предположении, что адаптация предохраняет систему от более серьезных погрешностей, которые неизбежно возникли бы вследствие дрейфа, свойственного любой преобразующей системе, если последняя предназначена для генерирования постоянного ответа на неизменный сигнал, то есть если система гальванически спарена. Электронные устройства часто обладают недостатками такого рода. Всюду, где возможно, инженеры используют цепи, спаренные по переменному току. Такие цепи хоть и проявляют адаптацию, то есть утрачивают длительно поддерживаемый устойчивый сигнал, но зато не дают ложных сигналов, возникающих при дрейфе составляющих. Для болевой системы важно передать: есть боль или нет боли; для такого рода систем нет надобности в "спаривании по переменному току".