Lz = m∙(h/2π), Мz = m∙μ.

Здесь m — целое число, которое может принимать значения 0, 1, 2, 3, h/2π — наименьшее значение проекции момента импульса; μ — наименьшее значение проекции магнитного момента. Величины h и μ, находятся из опытов:

h = 6,62∙10-27 эрг∙с; μ = 0,93∙10-20 эрг/Гс.

Добавим еще, что эти важные для физики постоянные величины носят имена великих ученых, заложивших основы квантовой физики: h называют постоянной Планка, μ — магнетоном Бора.

Однако постулаты квантовой механики оказались недостаточными, чтобы разобраться в различном характере расщепления пучков атомов разных элементов. Даже простейшие атомы — атомы водорода — вели себя неожиданно. Пришлось к законам квантовой механики добавить еще одну исключительно важную гипотезу, о которой мы уже мельком упоминали. Электрону (а позже оказалось, что и любой элементарной частице) надо приписать собственный момент импульса (спин) и соответственно собственный магнитный момент. Чтобы понять неизбежность уподобления электрона магнитной стрелке, нам надо сначала познакомиться поподробней с характером движения атомных электронов.

ЭЛЕКТРОННОЕ ОБЛАКО АТОМА

Невозможно увидеть движение электрона. Более того, нельзя надеяться на то, что прогресс науки приведет нас к тому, — что мы увидим электрон. Причина достаточно ясна. Чтобы «увидеть», надо «осветить». Но «осветить» — это значит подействовать на электрон энергией какого-либо луча. Электрон же настолько мал, обладает столь крошечной массой, что всякое вмешательство с помощью прибора для рассматривания неизбежно приведет к тому, что электрон уйдет с того места, где он находился ранее.

Не только те скромные сведения о строении атомов, которые сейчас будут сообщены читателю, но и все стройное учение об электронной структуре вещества являются плодом теории, а не эксперимента. Однако мы уверены в ее справедливости благодаря неисчислимому количеству наблюдаемых на опыте следствий, которые строжайшими логическими рассуждениями выводятся из теории. Картину электронного строения, которую нельзя увидеть, мы устанавливаем с той же степенью уверенности, с которой Шерлок Холмс по следам, оставленным преступником, устанавливал картину преступления.

Огромным источником доверия к теории является уже то, что картина электронного строения предсказывается с помощью тех же законов квантовой физики, которые устанавливаются другими опытами.

Мы уже рассказали, что порядковый номер химического элемента в таблице Менделеева есть не что иное, как заряд его ядра или, что то же самое, число принадлежащих нейтральному атому электронов. У атома водорода один электрон, гелия — два, лития — три, бериллия — четыре и т. д.

Как же движутся все эти электроны? Ответ на этот вопрос далеко не прост, и ответ на него носит лишь приближенный характер. Сложность проблемы заключается в том, что электроны взаимодействуют не только с ядром, но и друг с другом. К счастью, оказывается, что взаимное отталкивание (избегание) электронов играет все же меньшую роль, чем движение, которое обязано взаимодействию электрона с ядром. Только это обстоятельство и позволяет сделать выводы о характере движения электронов в различных атомах.

Каждому электрону природой отведена пространственная область, внутри которой он движется. По форме этих областей электроны делятся на категории, обозначаемые латинскими буквами s, р, d и f.

Наиболее простой является «квартира» s-электрона. Она представляет собой сферический слой. Теория показывает, что электрон чаще всего бывает в центре сферического слоя. Так что говорить о круговой орбите такого электрона — это грубое упрощение.

Область пространства, в которой путешествует р-электрон, совсем иная. Она напоминает по форме физкультурную гантель. Другие категории электронов имеют еще более сложные области существования.

Для каждого из атомов таблицы Менделеева теория (уже, правда, с привлечением экспериментальных данных) может указать, сколько электронов того или иного сорта он содержит.

Имеет ли связь это распределение электронов по типам движения с их распределением по К, L, М… энергетическим уровням, о котором мы рассказали в предыдущей главе? Самое прямое. Теория и опыт показывают, что электроны, относящиеся к L-уровню, могут быть только s-типа, относящиеся к L-уровню — s- и p-типа, к М-уровню — s-, р- и d-типа, и т. д.

Мы не станем сколько-нибудь подробно рассматривать электронное строение атомов. Ограничимся лишь перечислением электронной структуры первых пяти элементов таблицы. Атомы водорода, гелия, лития и бериллия имеют только s-электроны. Атом бора имеет четыре s-электрона и один p-электрон.

Сферическая симметрия области пространства, в которой путешествует s-электрон, ставит под сомнение наши рассуждения о магнитном моменте атома, содержащего один электрон. Действительно, раз момент импульса может принимать одинаковые и направленные с равной вероятностью во все стороны значения, то в среднем вращательный момент, а значит и магнитный момент такой системы должны равняться нулю. К этому естественному выводу приходит и квантовая физика: атомы, содержащие только s-электроны, не могут иметь магнитного момента.

Но если так, то пучки атомов первых четырех элементов таблицы Менделеева не должны отклоняться в неоднородном магнитном поле. А на самом деле? Оказывается, что это предсказание не выполняется для атомов водорода и лития. Пучки этих атомов ведут себя исключительно странно. В обоих случаях поток атомов расщепляется на две компоненты, отклоненные в противоположные стороны на одинаковые расстояния от первичного направления. Непонятно!?

МАГНИТНЫЕ МОМЕНТЫ ЧАСТИЦ

Спин электрона появился на сцене в 1925 году. Необходимость введения его в число участников событий, разыгрываемых в микромире, показали Абрахам Гаудсмит и Джордж Уленбек. Предположив, что электрон обладает собственным моментом импульса, эти исследователи показали, что все недоразумения, накопившиеся к тому времени при интерпретации атомных спектров, естественно разрешаются.

Опыты по расщеплению атомных пучков были проведены чуть позднее. И когда оказалось, что и здесь лишь с помощью понятия спина удается дать исчерпывающее объяснение наблюдаемым фактам, лишь тогда все физики поварили в спин.

Прошло еще немного времени и выяснилось, что собственный вращательный момент — спин — является свойством, присущим не только электрону, но и всем элементарным частицам.

Мы уже говорили, что название «спин» свидетельствует о естественной тяге к наглядности. Поскольку момент импульса вошел в физику как характеристика вращающегося твердого тела, то, выяснив, что для спасения закона сохранения элементарным частицам надо приписать некое значение момента импульса, многие физики тут же прибегли к наглядной картине вращения частицы около своей оси. Это наивное представление но выдерживает критики: говорить о вращении элементарной частицы около своей оси можно не с большим правом, чем рассуждать о вращении около своей оси математической точки.

Сторонники наглядности сумели из неких косвенных соображений оценить размер электрона, точнее — установить, что если это понятие и применимо к электрону, то размер электрона должен быть меньше определенной величины. Величина спина известна — мы приведем ее значение через несколько строк. Полагая, что электрон имеет форму, можно вычислить, с какой скоростью вращаются «точки его. поверхности». Оказывается, эта скорость больше скорости света. Упорство привело бы к необходимости расстаться с теорией относительности.