Изменить стиль страницы

«Всем ясно, что и капля масла и кристалл — тела неживые, — соглашались исследователи незримого мира. — Но в том-то и дело, что между ростом кристаллов и ростом живых существ имеется большая разница. Кристалл растет за счет веществ, растворенных в воде — эти вещества присоединяются к кристаллу, и он увеличивается в размерах, — а пища, которую поглощают живые существа, не присоединяется к ним, а перерабатывается коренным образом внутри их тела. Сначала она разлагается на составные части, а затем идет на поддержание сил организма или на образование новых сложных веществ, из которых организм построен».

Но, если «маленькие животные» действительно живые, как это доказать? Ведь для этого надо знать их особенности, знать, как они живут и размножаются.

Можно ли ответить на эти вопросы?

«Сначала надо, — решили ученые, — разобраться в массе этих крошечных существ, распределить их по сходным группам. Ведь именно так поступили с растениями».

Было время, когда древний человек знал только несколько сот разных растений. А в XVIII веке их знали уже более двадцати тысяч.

С накоплением знаний о природе появилась и потребность разобраться в массе растений, населяющих землю. Надо было выведать у растения, как оно питается, растет, размножается. Сначала попытались разбить растения на группы по внешним сходным признакам.

Растения делили на деревья, кустарники, травы. Но потом оказалось, что одно и то же растение в одних условиях можно встретить в виде кустарника, а в других — в виде дерева. Ива, растущая по берегам северных рек, — кустарник. А на юге ива растет в виде большого ветвистого дерева. Знакомые всем папоротники — это трава, прячущаяся в тенистых местах, под кронами высоких деревьев. А в жарких странах, в тропических джунглях, есть большие древовидные папоротники. Выходит, что деление растений на деревья, кустарники и травы не могло помочь ученым.

Тогда попробовали делить растения на листопадные и вечнозеленые, культурные и дикорастущие, цветущие и не цветущие. Но такое деление было очень сложно, да и не отражало действительности. Найдет ученый-путешественник дикую яблоню где-нибудь в горах Средней Азии, опишет ее и даст ей научное название, а другой в это время описывает культурную садовую яблоню и дает ей уже другое название. И многим невдомек, что это растения одного вида. В результате получалась невероятная путаница.

И вот шведский ученый Карл Линней нашел выход из положения. Наблюдая природу, он заметил, что все растения можно разделить на две большие группы: цветковые и бесцветковые. Примером бесцветковых могут быть папоротники, плауны и наши хвойные деревья. А цветковых гораздо больше. Среди них есть и деревья, и кустарники, и травы. Но и для них Линней отыскал один общий признак: все цветковые растения размножаются с помощью цветков.

Цветки у различных растений устроены по-разному, но обычно все имеют зеленую чашечку, венчик, сложенный из ярких лепестков, тычинки и пестик. Правда, бывают цветки без яркой окраски, а иногда и без лепестков вовсе, но тычинки и пестик есть всегда. Это общий, обязательный признак всех цветковых растений. И Линней по цветкам, по количеству тычинок распределил все известные ему растения на виды, роды и семейства. Такой способ деления растений оказался удобным и получил название системы Линнея. В ботанике — науке, изучающей растения, — был наведен порядок.

В наведении такого порядка в своей науке нуждались и исследователи невидимого мира. Много раз пытались они систематизировать жителей капли воды, разделить их на группы по каким-то общим признакам. И каждый раз отступали перед великим многообразием существ, населяющих этот странный мир.

Даже сам Линней, просидев немало дней за микроскопом, наконец махнул рукой и предложил всех микробов назвать одним общим именем «хаос».

«Видимо, бог, создавая этих „маленьких животных“, — заявил Линней, — имел в виду сохранить эту область жизни в тайне от человека».

Исследователи стояли у волшебной двери в новый, только что открытый ими мир. Но дверь была слишком узкой, в нее удавалось увидеть слишком мало подробностей.

Чтобы раздвинуть границы познания нового мира, нужно было прежде всего усовершенствовать микроскопы.

Именно в эти годы на научном небосклоне засияла новая яркая звезда, развернулся многогранный гений отца русской науки — Михаила Васильевича Ломоносова. Умея видеть далеко вперед, он понял, что микроскоп не игрушка, пригодная лишь для забавных «курьезных» опытов. В микроскопе Ломоносов разглядел инструмент, который может стать могучим орудием исследования природы.

Если бы можно было перенестись на двести лет назад и оказаться в Петербурге в 1760 году, мы бы не упустили случая побывать в Академии наук и посмотреть, как работали ученые того времени.

Путешествовать в прошлое можно. Конечно, лишь с помощью собственного воображения, заручившись предварительно всем необходимым: воспоминаниями людей, живших в давно прошедшие времена, трудами ученых-историков, старыми чертежами, рисунками и приборами, хранящимися в музеях.

Располагая таким «снаряжением», мы сможем довольно точно представить себе знаменитую химическую лабораторию Ломоносова.

Не думайте, что она была похожа на современные светлые, сверкающие стеклом и никелем химические лаборатории. Совсем нет. Химическая лаборатория Ломоносова была в низком, полутемном помещении с тяжелыми арочными сводами над головой. Вместо сверкающей химической посуды на полках стояли ряды грубых глиняных и стеклянных реторт, вместо легких бесшумных газовых горелок — большие чугунные сковороды, а на сковородах — раскаленные угли, раздуваемые при помощи кузнечных мехов.

Ученый-химик также не похож на современного. Он в малиновом кафтане, в чулках и туфлях, в длинном напудренном парике. Это Ломоносов. Возле него на маленьком столике стоит примитивный микроскоп, похожий на игрушечную мортиру.

Вокруг ученики. Они в таких же кафтанах и париках, а возрастом едва ли многим моложе своего учителя.

Ломоносов помещает под микроскопом стеклышко с каким-то предметом, и его громкий голос гудом гудит под низкими сводами лаборатории.

— Посмотрите в сей микроскоп на тоненькую шелковинку и вы увидите, что она состоит из девяноста пяти еще более тонких шелковинок. Эти шелковинки, как и шерстяные, и льняные, и пеньковые волокна, представляют собой полые трубки. При окрашивании волокон жидкость, которая находится внутри трубок, испаряется и замещается частицами краски.

Ученики по очереди приникают глазом к стеклам микроскопа и убеждаются, что все выглядит именно так, как говорит учитель.

— Посмотрите на искры, высекаемые из огнива, — продолжает Ломоносов. — Они покажутся вам частицами металла или стеклянными шариками. И это правильно, ибо искры не что иное, как раскаленные частицы стали или крупинки расплавленного кремня.

И вновь великовозрастные ученики выстраиваются в очередь возле микроскопа.

С удивлением разглядывают они срезы с зерен ржи, вишневой ягоды, зеленых листьев, пробки, древесины и видят, что все растительные ткани состоят из бесчисленного множества «пузырьков» — клеток. Но ведь все это имели возможность наблюдать и другие микроскописты. А Ломоносов хочет пойти дальше, расширить область применения микроскопа. Первым в мире он использовал этот инструмент для химических исследований.

Ученики Ломоносова могли быть уверены, что, кроме них, никто еще не видел таких чудес, как появление и рост мельчайших кристаллов в растворе солей и разложение медной проволоки в азотной кислоте.

Следопыты в стране анималькулей i_015.png

Таких чудес, какие показывал Ломоносов своим ученикам, не видел еще никто.

Но сам Ломоносов недоволен микроскопом. Для исследований, которые он задумал, нужны приборы, дающие более крупные и более четкие изображения. По его инициативе в академических мастерских начинаются работы по созданию таких инструментов.