Изменить стиль страницы

Первыми успеха добились эстонские исследователи. В 1970 году Лайск высказал гипотезу (теперь это кажется всем почти очевидным) о том, что фотодыхание является результатом конкуренции между молекулами углекислого газа и кислорода за один и тот же общий акцептор, так сказать «посадочную площадку» для молекул — рибулозодифосфат (РДФ). Обычно РДФ должен соединяться с углекислотой (процесс фотосинтеза), но порой растение как бы ошибается: захватывает кислород вместо углекислоты. Это и есть фотодыхание.

Этот вывод поставил все на свои места: объяснил, отчего фотосинтез слабеет при увеличении содержания кислорода в воздухе, почему подавлено фотодыхание при высоких концентрациях углекислоты, то обстоятельство, что растение с хорошими показателями фотосинтеза обладает и высоким уровнем фотодыхания и многие другие научные факты…

Морковка против сахарного тростника

До сих пор сознательно скрывалось главное: фотодыхание — это болезнь исключительно C3-растений. У C4-группы (кукуруза и прочие) фотодыхание практически отсутствует. Значит, там, где C3-растения испытывают углеродную «одышку», C4-растения чувствуют себя превосходно. Тут, в известной мере, и разгадка их высокой продуктивности.

Но тогда сразу же возникает важнейшая сельскохозяйственная проблема: как добиться того, чтобы C3-растения (а их большинство!) не тратили в фотодыхании бесполезно до 50 процентов того, что было ими накоплено в фотосинтезе. Не «худели» бы, так сказать, прямо на наших глазах.

Если бы можно было разгадать загадку фотодыхания и воспрепятствовать этим напрасным тратам, продуктивность многих сельхозкультур можно было бы удвоить. Это ли не мечта селекционеров, генетиков, агрохимиков и других специалистов, которые подчас годами в тяжких трудах борются за каждый процент?

Легко понять, как заинтриговало фотодыхание практиков, мечтающих о повышенных урожаях.

В начале 70-х годов все казалось простым и ясным. Многие ученые были преисполнены оптимизма. Достаточно взглянуть, к примеру, на групповой портрет участников конференции «Фотодыхание и фотосинтез» в Канберре (Австралия, 1970 год). Веселые, полные энтузиазма и надежд лица. В трудах конференции среди серьезных докладов была даже напечатана песенка про C3- и C4-растения. Ее сочинили сами ученые и пели хором в перерывах между выступлениями и дискуссиями. В куплетах были зарифмованы и шпинат, который-де фотосинтезирует нобелевским путем (намек на работы Калвина, удостоенные высшей награды), и цикл Хетча — Слэка, козни фотодыхания и многое иное…

Вскоре от шуток перешли к делу. Раз фотодыхание — вредное для продуктивности растений явление, с ним надо активно бороться. Американец Израэл Зелитч, например, увлекся селекцией. Он искал мутанты табака (это C3-растение) Гавана Сид, которые бы обладали низкой интенсивностью фотодыхания и, стало быть, повышенной способностью к фотосинтезу. Такие мутанты были найдены, отобраны, но здесь исследователя ждал пренеприятный сюрприз: количество зеленой табачной массы возросло, но… исчез фирменный аромат!

И это был не единственный «звоночек». Так связь между фотодыханием и продуктивностью растений становилась все более запутанной.

Исследования советских ученых, работы лаборатории члена-корреспондента АН СССР Ничипоровича в Институте физиологии растений АН СССР показали, что не существует прямой связи между наличием или отсутствием фотодыхания и фотосинтетической продуктивностью растения.

Мне показывали результаты этих любопытных экспериментов. Выращивали сахарную свеклу в обычных условиях — вариант № 1 — и при пониженной концентрации кислорода — 3 процента, вариант № 2. Об итогах исследований лучше всяких слов рассказали микрофотографии. На электронно-микроскопических снимках было видно, что в варианте № 1 в хлоропластах идет обычное накопление углеводов: отчетливо заметны крупные белые, на темном фоне, вкрапления крахмала. А в варианте № 2 (попытка подавить фотодыхание) картина была совсем иной. Крахмала было очень мало, его заменили темные, похожие на бобы, новообразования. Микроснимки показывали также, что биологические мембраны в хлоропластах при насильственном угнетении фотодыхания меняют свою структуру: они как бы набухают, корежатся.

Мне довелось поговорить с участниками этой важной научной работы кандидатами биологических наук Светланой Николаевной Чморой и Генриеттой Абрамовной Слободской. Они сомневались, что можно много выгадать, насильственно подавляя фотодыхание. Да, проблема оказалась очень непростой. Ее нельзя было сводить лишь к тому, усваивается ли в основном углерод зеленым листом или, наоборот, тратится. Выиграли в зеленой массе, но проиграли в количестве семян (а они-то и нужны!), весе корнеплодов. И тут какую-нибудь морковку бесполезно сравнивать с рекордным ростом сахарного тростника или кукурузы. Поэтому попытки переделывать C3-растения в C4 пока и не дали плодотворных результатов.

Из пустынь или из тропиков?

Если заглянуть внутрь C4-листа с помощью микроскопа, то можно отчетливо различить две группы фотосинтетических клеток. Вокруг сосудисто-проводящих пучков концентрически расположены внешний слой клеток мезофилла и внутренний, ближе к пучку, слой клеток обкладки. В клетках обкладки действует известный цикл Калвина, все тут так же, как и у C3-растений, а вот слой клеток мезофилла как бы является «приставкой», дополнительным органом-устройством: здесь происходит накапливание, концентрирование углекислоты. Эта пища растений вначале фиксируется, войдя в состав яблочной и аспарагиновой кислот (четырехуглеродные соединения! — тут-то и разгадка тех необычных явлений, которые первым наблюдал Карпилов), и уже затем расходуется по обычному механизму цикла Калвина в клетках обкладки.

И вновь загадки! Зачем C4-растениям эти сложности? Ведь поток углекислого газа при этом вроде бы тормозится… Конечно же, это приспособление растений к неким условиям, но каким? К жаре, холоду, яркому свету, отсутствию или избытку влаги?

К недостатку воды в пустынях растения умеют приноравливаться. К примеру, кактусы, эти «растения-верблюды», способны накапливать воду в больших количествах — крупные кактусы могут запасать до 3 тонн воды — и экономно тратить ее в течение продолжительных периодов засухи.

Как им это удается? Прежде всего многие кактусы как бы сложены из шаров, а эта геометрическая фигура имеет минимальное отношение поверхности к объему, а значит, сводятся к минимуму и потери влаги. Ограничивает расходы воды и малое количество устьиц, да и расположены они в углублениях, что также затрудняет испарение.

Но это еще не все. Природа в кактусах явила прямо-таки чудеса экономности. Эти растения открывают устьица только по ночам, когда температура воздуха в пустыне понижается, а его влажность повышается. Поэтому даже при открытых устьицах убыль паров воды в листе становится минимальной. И еще хитрость: запасенную ночью углекислоту кактусы фиксируют в химических соединениях, а уже днем при закрытых устьицах тратят ее на фотосинтез.

С кактусами ученые разобрались, а вот C4-растения для них все еще загадка. Первые их исследователи (среди них и Карпилов, к сожалению, этот талантливый ученый трагически погиб в 1978 году) полагали, что эти растения тропического, низкоширотного происхождения. Многие виды C4-группы обитают в тропиках. Их яркий представитель — сахарный тростник.

Итак, первая версия о происхождении C4-растений, что они родом из тропиков. Но есть и другое предположение. Исследования австралийца Хетча и других ученых показали, что «кукурузный» фотосинтез очень экономен в отношении влаги. C4-растения фиксируют, по крайней мере, в два раза больше углерода на единицу транспирированной воды, чем C3-растения. Причем при повышенных температурах эта разница еще более увеличивается. Таким образом, возникает и другой вывод: C4-растения — пришельцы из аридных зон, они адаптированы к жарким и засушливым условиям пустынь и полупустынь.