Изменить стиль страницы

Но тут инженеры еще долго, наверное, будут с завистью любоваться полетами птиц. И я еще раз напомню вам о коршуне, поразившем меня в детстве: ведь он своим пикированием на курицу и последовавшим за этим стремительным взлетом управлял главным образом посредством крыльев, то вовсе их убирая, то мобилизуя все их ресурсы.

Так, чтобы уменьшить посадочную скорость сверхзвуковых самолетов со стреловидными крыльями, площадь крыльев хорошо было бы увеличить в пять раз. Наоборот, в полете такая площадь уже оказалась бы излишней в те же пять раз. Ведь что такое излишняя несущая поверхность крыла? Это увеличение лобового сопротивления, за которое придется платить увеличением тяги двигателя и, следовательно, гигантским дополнительным расходом горючего. Конечно, можно делать «крыло с изменяющейся геометрией» — частично вдвигать его в фюзеляж. Но почему, собственно, надо отдавать предпочтение стреловидному или треугольному крылу? Неплохим вариантом было бы и короткое прямоугольное. Во всяком случае, разница не столь велика. Особенно если полет идет со скоростью, только раза в полтора превышающей звуковую.

Так постепенно в моих перекурах от перелистывания страниц технической информации я перешел к внутренней полемике, а от нее — к выдвижению контрпредложений и, таким образом, стал отдавать минуты, предписываемые гигиеной умственного труда, проектированию сверхзвукового пассажирского самолета, против которого сам же, кажется, и выступил вначале.

Скоро мои коллеги приметили, что на бумаге, приколотой поверх производственного чертежа, вырисовывается какая-то необычная, фантастическая машина.

Начинаю с фюзеляжа. Его длина обусловлена стандартными размерами сборочных цехов. Допустимый диаметр фюзеляжа ограничивается требованиями обеспечения хорошей обтекаемости самолета. Предположим, что фюзеляж у проектируемого лайнера по всей средней части, где размещаются пассажирские салоны, будет почти прямоугольным со скругленными углами, высотой пять метров, а шириной три. Сделаем фюзеляж двухэтажным — и сотня пассажиров разместится в нем совсем удобно.

Я хочу, чтобы машина могла садиться на обычный луг: уж больно это заманчиво — ведь очень часто, чтобы добраться от города до аэродрома с его бетонными взлетно-посадочными полосами, тратишь больше времени, чем на весь полет.

Конечно, я применю эффективную механизацию крыла — установлю на крыле закрылки, которые максимально увеличат его подъемную силу.

Но вот самолет взлетел и теперь должен набрать максимальную скорость полета. Расчет показывает, что к этому моменту крыло надо бы уменьшить в семь раз!.. Вот в каких огромных пределах должна изменяться геометрия крыла с помощью механизации!

Крыло для посадки должно иметь в ширину двенадцать метров и в размахе — тринадцать. Из этого размаха исключается ширина фюзеляжа (у меня три метра). Получается, что длина самих несущих поверхностей, консолей, как их называют в авиации, не так уж велика — по пяти метров на каждое крыло. Такие короткие консоли можно при транспортировке машины складывать к бортам фюзеляжа — он ведь у меня прямоугольного сечения. Консоли будут прилегать к фюзеляжу плотно по всей их длине.

Загадочный импульс i_019.png

Ну, а если части консолей так же прижимать к фюзеляжу и при полете на больших скоростях? Это несложно осуществить. Для устройства механизма уборки ненужной в скоростном полете части консолей можно использовать принцип уборки шасси.

Но такое короткое и широкое крыло, какое у меня получилось, трудно механизировать щитками. Лучше будет его разрезать еще поперек на три части и сделать щелевое многоконтурное крыло, какое — я уже говорил об этом — Николай Егорович Жуковский предлагал еще в 1909 году.

Я перекомпоновал самолет по-новому, но что-то в нем не смотрелось. А что? Неделю спустя понял. Стабилизатор станет куда эффективнее, если он будет частью крыла. По соображениям аэродинамики следовало бы двигатели или баки подвесить на концах стабилизатора и крыла.

Основное противоречие сверхзвукового пассажирского самолета устранялось: для достижения той же скорости полета мой самолет потребует меньшей мощности двигателей, значит, станет уже не столь прожорлив или, во всяком случае, будет сравним по расходу топлива с дозвуковыми реактивными самолетами. Получается, что над проектом сверхзвукового пассажирского самолета стоило поработать по-настоящему, не только ради отдыха.

Шли дни, и росла уверенность, что в моей схеме далеко не полностью использованы те возможности, которыми она, по-видимому, обладает. И я решил глубже заняться сверхзвуковой аэродинамикой. Конечно, в институте я изучал эту дисциплину. Но теперь возникла необходимость заново проштудировать ее, применительно к увлекшей меня идее. На чтение новой литературы ушло два месяца. Пришлось продираться сквозь настоящий лес неясностей и противоречивых рекомендаций.

Сначала, к примеру, считали, что стабилизатор — то есть неподвижную часть хвостового оперения, обеспечивающую самолету продольную устойчивость в полете, — надо обязательно выносить из зоны возмущения, создаваемой обтеканием крыла. Поэтому его иногда помещали на верхушке киля. В конце концов оказалось, что эту деталь машины можно оставить на уровне крыла, как и на тихоходных самолетах. Но в одном сходились и наши и иностранные исследователи: лобовое сопротивление крыла при полете со сверхзвуковой скоростью уменьшается, если уменьшить коэффициент подъемной силы. Но стоит вытащить «нос», как вязнет «хвост», — если уменьшить лобовое сопротивление крыла, то сразу же начинает расти потребная несущая поверхность, так что выигрыша не получается! Тогда я принял решение: заставить стабилизатор тоже создавать подъемную силу. Выигрыш был очень значительным: без ущерба для подъемной силы достигнуто уменьшение лобового сопротивления крыла и стабилизатора на одиннадцать процентов! А это ведь экономия мощности, горючего.

После того как заявка на новую схему самолета была отправлена в Комитет по изобретательству, мне очень захотелось продолжить ее разработку в своем ОКБ. Я написал соответствующее заявление, и дело пошло по своим обычным каналам: различные отделы должны были представить свои заключения. Замечаний собралось более двух дюжин. Специалисты давали ответы на все первостепенные вопросы: какая будет скорость самолета, мощность двигателей, вес, посадочная скорость, скороподъемность и многое-многое другое. Расхождение с моими предварительными данными в расчетах очень придирчивых и опытных экспертов составило 10–15 процентов где в лучшую, а где и в худшую сторону. А это хорошая, как говорим мы, изобретатели и конструкторы, сходимость. Эксперты установили, что проект превосходит все известные схемы сверхзвуковых пассажирских самолетов, предлагавшиеся за рубежом. Значит, когда-нибудь Аэрофлот заимеет такие лайнеры. Когда? Я запасся терпением. «Всякому овощу, — как говорят в народе, — свое время», придут времена и для таких сверхзвуковых пассажирских самолетов.

Секрет пернатых

Загадочный импульс i_020.png

Бывает и так: появляется замечательная идея, но осуществить ее удается лишь после всесторонней предварительной проверки на работающих моделях. И только на моделях!

Люди долго не понимали, как летают птицы. Инженеров всегда удивляло, откуда птицы берут колоссальные запасы энергии для перелетов. Ведь даже если предположить, что коэффициент полезного действия птичьего крыла около единицы — чего в природе не бывает, — то утка весом в 3 килограмма должна была бы потратить на перелет протяженностью в две тысячи километров… около 18 килограммов жира!

Пытались путем экспериментов дойти до истины.

Ворону, например, привязывали к весам работающей аэродинамической трубы и заставляли «летать», склеивая птице то одни, то другие группы перьев, чтобы узнать, что изменится, если они не будут работать, а на основании этого догадаться, как именно они работают и как работает крыло птицы в целом. Однако ничего путного эти опыты не давали.