Изменить стиль страницы

После приходили и другие решения того, как поступить с автожирным ротором. Разрабатывать их было уже куда легче, потому что в многолетних трудах и поисках было найдено приемлемое принципиальное решение проблемы.

Даже беглое описание модели такого аппарата должно было показать читателю, что «игрушка» получилась сложной. Легкого старта у нее быть, пожалуй, и не может. Зато когда она взлетит, будет радостно сознавать, что теперь решение конструктивных задач создания настоящего самолета этого типа во многом упростится еще на модели. Наиболее сложные черновые вопросы, неподатливые узлы до некоторой степени будут освоены еще при модельном решении технической задачи.

Однако решать задачу набело — вовсе не будет означать простого повторения модели, соответственным увеличением ее размеров. Беловик, модель-самолет, придется создавать творчески, заново: как художники пишут картину по этюдам.

Ротолет

Загадочный импульс i_026.png

Человек еще долго будет завидовать свободному полету птиц и отвоевывать у пернатых летунов один за другим их аэродинамические секреты. Но преимущество все же всегда было и будет на стороне человека. Например, чайку, ласточку или орла великий инженер — Природа снабдила хорошими крыльями. Представим себе, что эволюция в живой природе будет продолжаться. Однако птичье крыло уже не изменится принципиально. А человек, строящий летательные аппараты, может отказаться от использования одних принципов, если найдет другие, открывающие больше перспектив.

Любого специалиста можно в наше время сравнить с пловцом, находящимся в самой стремнине мощного течения. Он находится в огромном потоке научной и технической информации, то есть сведении о новых наблюдениях, открытиях и экспериментах, новых теориях, технических достижениях и прочем. Остановиться, перестать ориентироваться в этом потоке — значит навлечь на себя угрозу долгих и бесплодных скитаний вдали от берегов. А на берегу, мы знаем, ждет не дождется нашего внимания проблема, и, чтобы решать ее, нужно всего только найти небольшую, но ключевую деталь. Вот и приходится изобретателю, в какой бы области он ни работал, внимательно смотреть вокруг. И тогда в какой-то момент какая-то возбужденная неожиданным впечатлением бдительная клеточка мозга, как впередсмотрящий на боевом корабле, подает всем другим долгожданный сигнал:

— Всем, всем, всем!

Какая клеточка и по какому закону сделает это?

Никогда нельзя знать заранее. Но непременно будет получен мозгом этот таинственный, но важнейший импульс, и с него начинается творчество. И тогда рождается идея, удивляющая всех.

Наши рассуждения не случайно завели нас на берег воображаемого моря. Сейчас придется коснуться некоторых фактов, имеющих отношение к морской стихии.

В 50-х годах прошлого века был открыт так называемый эффект Магнуса. Он состоит в следующем. Если поместить цилиндрическое тело в поток воздуха и начать его вращать, то оно получит движение в направлении, перпендикулярном потоку. Это объясняется просто. Скорость обтекания цилиндра воздухом будет различна на его противоположных сторонах, ибо там, где движение воздуха и точек поверхности цилиндра происходит в одном направлении, произойдет сложение скоростей. На противоположной стороне картина будет обратной. Возникает разность движений. Она-то и породит силу, приводящую цилиндр в движение, толкающую его «в бок».

В 1924 году инженер Флеттнер построил судно, у которого мачты были заменены двумя цилиндрическими башнями — роторами. Они приводились во вращение сравнительно маломощными электродвигателями. И тогда судно Флеттнера начинало двигаться — только не по ветру, как парусные суда, а поперек. Было подсчитано, что роторы корабля (названного ротоходом) используют ветер значительно эффективнее, чем паруса.

Инженер Савониус предложил цилиндрические роторы разрезать вдоль, по их оси, сместить обе половины по плоскости разреза и так их и закрепить. Тогда поток воздуха, ударяя во внутренние поверхности сначала одного, а затем другого полуцилиндра, начнет вращать ротор — и отпадет надобность в моторах, крутивших роторы на судне Флеттнера. Схему, предложенную Савониусом, использовали при изготовлении роторных змеев.

Загадочный импульс i_027.png

Так, звено за звеном, мысль подобралась и к авиации. Здесь эффект Магнуса придумали использовать следующим образом: заменить крылья самолета вращающимися роторами. Еще в конце 20-х годов исследователи установили, что роторное крыло может дать подъемную силу, в три-четыре раза большую, чем обычное крыло самолета.

В авиационной литературе, в патентных материалах да и в иллюстрированных журналах, особенно зарубежных, время от времени и сейчас появляются проекты летательных аппаратов на роторах — ротолетов.

Вот и мне захотелось извлечь побольше пользы из роторного крыла, чтобы еще и еще раз проверить его конкурентоспособность в соревновании с тем крылом, принцип которого человеку подсказали птицы.

Признаться, мне хотелось построить летающую модель ротолета! Такова неизлечимая натура старого авиамоделиста-экспериментатора. Раньше это было трудно осуществить: не было хороших моторчиков для моделей. Но теперь, в 1953 году, у нас были надежные компрессионные двигатели, которые при мощности в 0,2 лошадиной силы весили лишь 200 граммов. Итак, у меня есть задача, налицо также одно из важных условий ее успешного решения. Остается взяться за работу! И я взялся.

Вот я тружусь, строю свою модель. Сделал роторы-крылья. Сделал фюзеляж из двух реек, расходящихся под острым углом от места крепления двигателя. На концах этих реек, на хвосте, подвесил ротор-стабилизатор, установил крылья-роторы… Оказалось, что такая схема неустойчива — не хочет модель летать, да и только! Кувыркается либо носом вверх, либо носом вниз. Но выяснилось и одно достоинство: как бы модель ни кувыркалась, все же летела она прямо, не сворачивая в сторону, несмотря на то, что киля у нее не было. Более того, модель не только не нуждалась в киле, но даже активно «протестовала» против него: с килем модель теряла равновесие… Все это я узнал к исходу дня из множества испытаний, которым терпеливо подвергал модель. Знания потребовали определенных издержек — в ходе опытов было переломано 19 пропеллеров…

Но раз уж я наткнулся на непредвиденное препятствие, остановиться было невозможно: появилось что-то вроде спортивного азарта. На другой день я переделал модель и вместо ротора-стабилизатора поставил плоскость, как на обычных самолетах. Начал пробовать новый вариант. Оказалось, что такая конструкция была уже более устойчива в полете. Однако модели упрямо продолжали падать. Продольной устойчивости моему ротолету все еще не хватало. Правда, теперь винтов ломалось меньше!

«Ну вот и славно, — подумалось мне, — в два дня понять, что все виданные мной, а также исследованные схемы ротолетов не работоспособны — это немало. Чтобы заставить такую модель летать, необходимо какое-то существенное изменение в ее аэродинамике, которое и обеспечило бы новое качество ротолета — устойчивый полет.

А может быть, надо ради этого качества чем-то пожертвовать? Например, частью подъемной силы!..»

Иначе говоря, на деле подтверждалось мудрое восточное изречение: «Упорный и терпеливый увидит благоприятный конец начатого дела».

Зная мое упрямство, все ждали, что же будет дальше. Но ничего внешне эффектного в нашей конструкторской работе нет. Все происходит «просто».

«Просто» мысль продолжает работать, «просто» она что-то отбрасывает и что-то закрепляет, и в результате новая идея. А что, если в модели между несущими роторами оставить промежуток, равный размаху стабилизатора? По-видимому, эффективность стабилизатора резко возрастет, так как он не будет испытывать вредного воздействия потоков воздуха, возмущенного вращением роторов, — эти потоки попросту минуют его справа и слева. Строю такую модель. Кстати, это был десятый вариант!