Принцип суперпозиции
«Когда система находится в одном состоянии, её всегда можно рассматривать как находящуюся частично в каждом из двух или более других состояний».
В соответствии с этим квантовомеханическим принципом система в конкретном квантовом состоянии может быть описана как суперпозиция (сумма) двух или более других состояний. На практике это обычно означает, что конкретная волновая функция может быть выражена как сумма двух или более других волновых функций. Например, волновые функции для молекул можно образовать как суперпозицию атомных волновых функций. Фотонный волновой пакет можно образовать как суперпозицию импульсных собственных состояний.
Пространственное распределение вероятности
Характеризует вероятность обнаружить частицу, такую как электрон, в различных областях пространства. Пространственное распределение вероятности можно вычислить на основе квантовомеханической волновой функции частицы.
Протон
Субатомная частица, имеющая положительный заряд — одна из фундаментальных составляющих атомов и молекул. Положительный заряд протона равен по величине отрицательному заряду электрона. Атом содержит одинаковое число электронов и протонов, так что в целом он не имеет электрического заряда. Число протонов в атомном ядре, называемое атомным номером, определяет заряд ядра. Разные атомы (элементы) имеют разное число протонов в ядре.
Размер абсолютный
Объект велик или мал в абсолютном смысле в зависимости от того, является неустранимое минимальное возмущение, сопровождающее измерение, пренебрежимо малым или нет. Если минимальное возмущение пренебрежимо мало, то объект является большим в абсолютном смысле. Если оно не является пренебрежимо малым, то объект абсолютно мал. Абсолютно малые объекты могут описываться квантовой механикой, но не классической механикой.
Размер относительный
Размер, определяемый сравнением одного объекта с другим. Объект может быть велик или мал относительно другого объекта. В классической механике предполагается, что размер является относительным. Классическая механика не может описывать объекты, которые малы в абсолютном смысле.
Световой квант
Отдельная частица света. Фотон.
Свободная частица
Частица, на которую не действуют никакие силы. Движение свободной частицы будет прямолинейным, поскольку отсутствуют силы, такие как гравитация или сопротивление воздуха, которые влияли бы на её траекторию.
Собственное состояние
Чистое состояние системы, ассоциированное с точно определённым значением наблюдаемой величины, которое называется собственным значением. Находясь в энергетическом собственном состоянии, система, такая, например, как атом водорода, обладает строго определённой энергией. Атом водорода имеет множество различных энергетических собственных состояний, которым соответствуют различные значения энергии (собственные значения энергии). Система в импульсном собственном состоянии имеет точно определённое значение импульса. Каждому собственному состоянию соответствует волновая функция. Собственные состояния — это фундаментальные состояния в квантовой теории.
Спектроскопия
Экспериментальное измерение количества света на разных длинах волн, поглощаемого или излучаемого системой атомов или молекул.
Тройная связь
Химическая связь, которая удерживает вместе два атома за счёт трёх совместно используемых пар электронов. Тройная связь короче и сильнее (требует больше усилий для разрыва), чем двойная или одиночная связь.
Углеводороды
Молекулы, состоящие только из углерода и водорода, такие как метан (природный газ) и компоненты нефти.
Узел
Для одномерной волны это точка, где амплитуда волны равна нулю. Для трёхмерной волны это плоскость или другая поверхность, где амплитуда волны равна нулю. При пересечении узла знак волновой функции меняется. В квантовой механике узел волновой функции, описывающей частицу, такую как электрон, — это место, где вероятность обнаружить частицу равна нулю.
Уравнение Шрёдингера
Фундаментальное уравнение квантовой теории. Решение уравнения Шрёдингера для атома или молекулы даёт квантованные энергетические уровни и волновые функции, описывающие амплитуду вероятности обнаружения электрона в разных точках пространства в атоме или молекуле.
Фаза
Положение в пределах одного цикла волны. Пик волны (точка максимальной положительной амплитуды) принимается за фазу 0 градусов (0°), ближайший следующий за ней узел (точка, где амплитуда равна нулю) — это 90°. Фаза 90° — это четверть цикла волны. Фаза 180° соответствует половине цикла. Это точка максимальной отрицательной амплитуды. О двух волнах одинаковой длины говорят, что они сдвинуты по фазе, если их пики не совпадают.
Формула Ридберга
Ранняя эмпирическая формула, описывающая цвета излучения, испускаемого и поглощаемого атомами водорода.
Фотон
Частица света.
Фотоэлектрический эффект
Объяснённый Эйнштейном эффект, при котором одиночная частица света — фотон — выбивает из куска металла один электрон. Эйнштейновское объяснение фотоэлектрического эффекта показало, что свет не является волной, как его описывает классическая электромагнитная теория.
Функция радиального распределения
Математическая функция, которая описывает вероятность обнаружения электрона на определённом расстоянии от ядра атома независимо от направления. Она получается из волновой функции электрона в атоме.
Частица в ящике
Квантовомеханическая задача, в которой частица, такая как электрон, заключена в одномерном ящике с бесконечно высокими непроницаемыми стенками. Энергетические уровни частицы в ящике квантуются, то есть для неё существуют дискретные энергетические уровни. Частица в ящике — это простейшая квантовомеханическая задача, в которой частица заключена в небольшой области пространства и имеет квантованные уровни энергии.
Частота
Число повторов регулярного события в единицу времени. Для волны частота — это число пиков волны, которые проходят мимо за определённое время. Для волн, движущихся с одинаковой скоростью, высокая частота соответствует коротким волнам, а низкая частота — длинным волнам. Длина волны — это расстояние между пиками волны. Для световых (электромагнитных) волн частота равна скорости света, делённой на длину волны.
Черноте́льное излучение (излучение абсолютно чёрного тела)
Свет, испускаемый горячим объектом. Цвет этого света зависит от температуры объекта. Черноте́льное излучение — это первое физическое явление, при описании которого Максом Планком в 1900 году были использованы идеи, которые впоследствии легли в основу квантовой механики.
Электромагнитная волна
Волна, состоящая из электрического и магнитного полей, которые колеблются с одинаковой частотой и распространяются со скоростью света. Электромагнитные волны — это описание света в классической механике. Классическая теория электромагнитных волн полезна в описании многих свойств света и радиоволн, но она не может описать многие явления, такие как фотоэлектрический эффект.