Изменить стиль страницы

What especially upset Mauchly and Eckert, who tried to patent many of the concepts behind both ENIAC and then EDVAC, was that the distribution of von Neumann’s report legally placed those concepts in the public domain. When Mauchly and Eckert tried to patent the architecture of a stored-program computer, they were stymied because (as both the Army’s lawyers and the courts eventually ruled) von Neumann’s report was deemed to be a “prior publication” of those ideas.

These patent disputes were the forerunner of a major issue of the digital era: Should intellectual property be shared freely and placed whenever possible into the public domain and open-source commons? That course, largely followed by the developers of the Internet and the Web, can spur innovation through the rapid dissemination and crowdsourced improvement of ideas. Or should intellectual property rights be protected and inventors allowed to profit from their proprietary ideas and innovations? That path, largely followed in the computer hardware, electronics, and semiconductor industries, can provide the financial incentives and capital investment that encourages innovation and rewards risks. In the seventy years since von Neumann effectively placed his “Draft Report” on the EDVAC into the public domain, the trend for computers has been, with a few notable exceptions, toward a more proprietary approach. In 2011 a milestone was reached: Apple and Google spent more on lawsuits and payments involving patents than they did on research and development of new products.64

THE PUBLIC UNVEILING OF ENIAC

Even as the team at Penn was designing EDVAC, they were still scrambling to get its predecessor, ENIAC, up and running. That occurred in the fall of 1945.

By then the war was over. There was no need to compute artillery trajectories, but ENIAC’s first task nevertheless involved weaponry. The secret assignment came from Los Alamos, the atomic weapons lab in New Mexico, where the Hungarian-born theoretical physicist Edward Teller had devised a proposal for a hydrogen bomb, dubbed “the Super,” in which a fission atomic device would be used to create a fusion reaction. To determine how this would work, the scientists needed to calculate what the force of the reactions would be at every ten-millionth of a second.

The nature of the problem was highly classified, but the mammoth equations were brought to Penn in October for ENIAC to crunch. It required almost a million punch cards to input the data, and Jennings was summoned to the ENIAC room with some of her colleagues so that Goldstine could direct the process of setting it up. ENIAC solved the equations, and in doing so showed that Teller’s design was flawed. The mathematician and Polish refugee Stanislaw Ulam subsequently worked with Teller (and Klaus Fuchs, who turned out to be a Russian spy) to modify the hydrogen bomb concept, based on the ENIAC results, so that it could produce a massive thermonuclear reaction.65

Until such classified tasks were completed, ENIAC was kept under wraps. It was not shown to the public until February 15, 1946, when the Army and Penn scheduled a gala presentation with some press previews leading up to it.66 Captain Goldstine decided that the centerpiece of the unveiling would be a demonstration of a missile trajectory calculation. So two weeks in advance, he invited Jean Jennings and Betty Snyder to his apartment and, as Adele served tea, asked them if they could program ENIAC to do this in time. “We sure could,” Jennings pledged. She was excited. It would allow them to get their hands directly on the machine, which was rare.67 They set to work plugging memory buses into the correct units and setting up program trays.

The men knew that the success of their demonstration was in the hands of these two women. Mauchly came by one Saturday with a bottle of apricot brandy to keep them fortified. “It was delicious,” Jennings recalled. “From that day forward, I always kept a bottle of apricot brandy in my cupboard.” A few days later, the dean of the engineering school brought them a paper bag containing a fifth of whiskey. “Keep up the good work,” he told them. Snyder and Jennings were not big drinkers, but the gifts served their purpose. “It impressed us with the importance of this demonstration,” said Jennings.68

The night before the demonstration was Valentine’s Day, but despite their normally active social lives, Snyder and Jennings did not celebrate. “Instead, we were holed up with that wonderful machine, the ENIAC, busily making the last corrections and checks on the program,” Jennings recounted. There was one stubborn glitch they couldn’t figure out: the program did a wonderful job spewing out data on the trajectory of artillery shells, but it just didn’t know when to stop. Even after the shell would have hit the ground, the program kept calculating its trajectory, “like a hypothetical shell burrowing through the ground at the same rate it had traveled through the air,” as Jennings described it. “Unless we solved that problem, we knew the demonstration would be a dud, and the ENIAC’s inventors and engineers would be embarrassed.”69

Jennings and Snyder worked late into the evening before the press briefing trying to fix it, but they couldn’t. They finally gave up at midnight, when Snyder needed to catch the last train to her suburban apartment. But after she went to bed, Snyder figured it out: “I woke up in the middle of the night thinking what that error was. . . . I came in, made a special trip on the early train that morning to look at a certain wire.” The problem was that there was a setting at the end of a “do loop” that was one digit off. She flipped the requisite switch and the glitch was fixed. “Betty could do more logical reasoning while she was asleep than most people can do awake,” Jennings later marveled. “While she slept, her subconscious untangled the knot that her conscious mind had been unable to.”70

At the demonstration, ENIAC was able to spew out in fifteen seconds a set of missile trajectory calculations that would have taken human computers, even working with a Differential Analyzer, several weeks. It was all very dramatic. Mauchly and Eckert, like good innovators, knew how to put on a show. The tips of the vacuum tubes in the ENIAC accumulators, which were arranged in 10 x 10 grids, poked through holes in the machine’s front panel. But the faint light from the neon bulbs, which served as indicator lights, was barely visible. So Eckert got Ping-Pong balls, cut them in half, wrote numbers on them, and placed them over the bulbs. As the computer began processing the data, the lights in the room were turned off so that the audience would be awed by the blinking Ping-Pong balls, a spectacle that became a staple of movies and TV shows. “As the trajectory was being calculated, numbers built up in the accumulators and were transferred from place to place, and the lights started flashing like the bulbs on the marquees in Las Vegas,” said Jennings. “We had done what we set out to do. We had programmed the ENIAC.”71 That bears repeating: they had programmed the ENIAC.

The unveiling of ENIAC made the front page of the New York Times under the headline “Electronic Computer Flashes Answers, May Speed Engineering.” The story began, “One of the war’s top secrets, an amazing machine which applies electronic speeds for the first time to mathematical tasks hitherto too difficult and cumbersome for solution, was announced here tonight by the War Department.”72 The report continued inside the Times for a full page, with pictures of Mauchly, Eckert, and the room-size ENIAC. Mauchly proclaimed that the machine would lead to better weather predictions (his original passion), airplane design, and “projectiles operating at supersonic speeds.” The Associated Press story reported an even grander vision, declaring, “The robot opened the mathematical way to better living for every man.”73 As an example of “better living,” Mauchly asserted that computers might one day serve to lower the cost of a loaf of bread. How that would happen he did not explain, but it and millions of other such ramifications did in fact eventually transpire.