Изменить стиль страницы

In late 1940 he confided in some friends that he hoped to pull together all of this information to make a digital electronic computer. “We are now considering construction of an electrical computing machine,” he wrote that November to a meteorologist he had worked with. “The machine would perform its operations in about 1/200th second, using vacuum tube relays.”49 Even though he was collaborative and picking up information from many people, he began to exhibit a competitive urge to be the first to make a new type of computer. He wrote a former student in December, “For your own private information, I expect to have, in a year or so, when I can get the stuff and put it together, an electronic computing machine. . . . Keep this dark, since I haven’t the equipment this year to carry it out and I would like to ‘be the first.’ ”50

That month, December 1940, Mauchly happened to meet Atanasoff, setting off a series of events followed by years of disputes over Mauchly’s propensity to gather information from different sources and his desire to “be the first.” Atanasoff was attending a meeting at the University of Pennsylvania, and he dropped by a session at which Mauchly proclaimed his hope of building a machine to analyze weather data. Afterward Atanasoff came up to say that he had been building an electronic calculator at Iowa State. Mauchly jotted on his conference program a note that Atanasoff claimed to have devised a machine that could process and store data at a cost of only $2 per digit. (Atanasoff’s machine could handle three thousand digits and cost about $6,000.) Mauchly was amazed. He estimated that the cost of a vacuum-tube computer would be almost $13 per digit. He said he would love to see how it was done, and Atanasoff invited him to come to Iowa.

Throughout the first half of 1941, Mauchly corresponded with Atanasoff and continued to marvel at the low cost he claimed for his machine. “Less than $2 per digit sounds next to impossible, and yet that is what I understood you to say,” he wrote. “Your suggestion about visiting Iowa seemed rather fantastic when first made, but the idea grows on me.” Atanasoff urged him to accept. “As an additional inducement I will explain the $2 per digit business,” he promised.51

THE MAUCHLY-ATANASOFF VISIT

The fateful visit lasted four days in June 1941.52 Mauchly drove from Washington and brought his six-year-old son, Jimmy, arriving late on Friday, June 13, much to the surprise of Atanasoff’s wife, Lura, who had not yet prepared the guest room. “I had to fly around, go to the attic, get extra pillows, and everything,” she later recalled.53 She also made them supper, since the Mauchlys had arrived hungry. The Atanasoffs had three children of their own, but Mauchly seemed to assume that Lura would take care of Jimmy during the visit, so she did, grudgingly. She took a dislike to Mauchly. “I don’t think he’s honest,” she told her husband at one point.54

Atanasoff was eager to show off his partly built machine, even as his wife worried that he was being too trusting. “You must be careful until this is patented,” she warned. Nevertheless, Atanasoff took Mauchly, along with Lura and the children, to the physics building basement the next morning, proudly pulling off a sheet to reveal what he and Berry were cobbling together.

Mauchly was impressed by a few things. The use of condensers in the memory unit was ingenious and cost-effective, as was Atanasoff’s method of replenishing their charge every second or so by putting them on rotating cylinders. Mauchly had thought about using condensers instead of more expensive vacuum tubes, and he appreciated how Atanasoff’s method of “jogging their memory” made it workable. That was the secret behind how the machine could be constructed for $2 per digit. After reading Atanasoff’s thirty-five-page memo detailing the machine, and taking notes, he asked if he could take a carbon copy home. That request Atanasoff denied, both because he had no extras to give away (photocopiers hadn’t been invented) and because he was becoming worried that Mauchly was sucking in too much information.55

But for the most part, Mauchly was uninspired by what he saw in Ames—or at least that is what he insisted in retrospect. The foremost drawback was that Atanasoff’s machine was not fully electronic but instead relied on the mechanical drums of condensers for memory. That made it inexpensive but also very slow. “I thought his machine was very ingenious, but since it was in part mechanical, involving rotating commutators for switching, it was not by any means what I had in mind,” Mauchly remembered. “I no longer became interested in the details.” Later, in his testimony at the trial over the validity of his patents, Mauchly called the semimechanical nature of Atanasoff’s machine “a rather drastic disappointment” and dismissed it as “a mechanical gadget which uses some electronic tubes in operation.”56

The second disappointment, Mauchly contended, was that Atanasoff’s machine was designed for a single purpose and could not be programmed or modified to perform other tasks: “He had not done anything to plan for this machine to be anything but a single set purpose machine and to solve sets of linear equations.”57

So Mauchly left Iowa not with a breakthrough concept for how to build a computer but rather with a handful of smaller insights to add to the basket of ideas he had been collecting, consciously and subconsciously, on his visits to conferences and colleges and fairs. “I came to Iowa with much the same attitude that I went to the World’s Fair and other places,” he testified. “Is there something here which would be useful to aid my computations or anyone else’s?”58

Like most people, Mauchly gleaned insights from a variety of experiences, conversations, and observations—in his case at Swarthmore, Dartmouth, Bell Labs, RCA, the World’s Fair, Iowa State, and elsewhere—then combined them into ideas he considered his own. “A new idea comes suddenly and in a rather intuitive way,” Einstein once said, “but intuition is nothing but the outcome of earlier intellectual experience.” When people take insights from multiple sources and put them together, it’s natural for them to think that the resulting ideas are their own—as in truth they are. All ideas are born that way. So Mauchly considered his intuitions and thoughts about how to build a computer to be his own rather than a bag of ideas he had stolen from other people. And despite later legal findings, he was for the most part right, insofar as anyone can be right in thinking that his ideas are his own. That is the way the creative process—if not the patent process—works.

Unlike Atanasoff, Mauchly had the opportunity, and the inclination, to collaborate with a team filled with varied talents. As a result, instead of producing a machine that didn’t quite work and was abandoned in a basement, he and his team would go down in history as the inventors of the first electronic general-purpose computer.

As he was preparing to leave Iowa, Mauchly got a piece of pleasant news. He had been accepted into an electronics course at the University of Pennsylvania, one of the many around the country being funded on an emergency basis by the War Department. It was a chance to learn more about using vacuum tubes in electronic circuits, which he was now convinced was the best way to make computers. It also showed the importance of the military in driving innovation in the digital age.

During this ten-week course in the summer of 1941, Mauchly got the chance to work with a version of the MIT Differential Analyzer, the analog computer designed by Vannevar Bush. The experience amped up his interest in building his own computer. It also made him realize that the resources to do so at a place like Penn were far greater than at Ursinus, so he was thrilled to accept an instructor’s position at the university when it was offered at the end of the summer.