Следующая стадия эволюции коры начинается 3–2 млрд лет назад. К этому времени земная кора уже остыла на всю глубину (20–40 км) и приобрела необходимую хрупкость. В местах максимальных напряжений земная кора стала трескаться. Возникли глубинные разломы. Вдоль них образовались прогибы, где накапливались многокилометровые толщи осадков.
По сохранившимся в породах остаткам существовавших ранее животных и растений (с «архебиологической», так сказать, точки зрения) историю Земли обычно делят на несколько эр: архейскую, протерозойскую, палеозойскую, мезозойскую и кайнозойскую. Последние три эры, в свою очередь, делятся на геологические периоды. Разработанные в XX веке методы определения абсолютного возраста горных пород по скорости радиоактивного распада показали, что длительность эр неодинакова.
А теперь о том, из чего Земля состоит геологически. Платформой геологи именуют область с двухъярусным строением: внизу — смятый в складки плотный фундамент, выше — полого лежащий рыхлый осадочный чехол.
Различают Североамериканскую, Восточно-Европейскую, Сибирскую, Южноамериканскую, Африканскую, Индийскую, Китайскую и Австралийскую платформы. В пределах платформ выделяют два вида структур — щиты и плиты. Первые вплоть до настоящего времени испытывали поднятия; в их пределах осадочный чехол отсутствует. На щитах длительно (до миллиарда лет) идет размыв кристаллических пород фундамента, благодаря чему на дневную поверхность выходят породы с возрастом 2–4 млрд лет.
Плитами называются пространства платформ, фундамент которых перекрыт осадочным слоем. Крупные отрицательные структуры (прогибы) в пределах плит именуются синеклизами. По форме синеклиза напоминает пологое блюдце.
Еще один класс структур земной коры — геосинклинали. Это длинные, протягивающиеся на многие сотни километров, относительно узкие и глубокие прогибы земной коры, обычно ограниченные разломами и заполненные мощными толщами осадочных и вулканических горных пород, которые в результате длительных и интенсивных тектонических деформаций превращаются в сложную складчатую структуру — часть горных сооружений. Важнейшая отличительная их черта — много бóльшая контрастность движений по сравнению с платформами.
Образованию геосинклинального пояса предшествовало заложение системы разломов большой протяженности (тысячи километров) и глубокого залегания. В результате поверхность земного шара оказалась состоящей из «обломков» древних платформ, разделенных геосинклинальными поясами. Наиболее протяженным является Тихоокеанский пояс, обрамляющий с востока, севера и запада впадину Тихого океана. Следующий по величине — Средиземноморский пояс. Он начинается в районе Гибралтарского прогиба и протягивается через Средиземное море, Кавказ, Памир и Гималаи в Зондский архипелаг, где сливается с Тихоокеанским поясом. Кроме того, выделяют Урало-Монгольский, Атлантический и Арктический геосинклинальные пояса. Последние два из них в значительной степени перекрыты океанами и на поверхность выходят лишь их краевые части.
Бриллианты горят. Сжечь бриллиант легче, чем его золотую или платиновую оправу. При температуре выше 900 °C алмазы сгорают дотла.
Платформы по традиции объединяют в две группы: северную и южную. Северная именуется Лавразиатской. В нее входят три платформы: Североамериканская (бóльшая часть Северной Америки и Гренландии), Восточно-Европейская (практически вся Европа) и Сибирская (Россия между реками Енисей и Лена). Южная группа платформ именуется Гондванской. Ученые говорят, что 200–300 млн лет назад все платформы южного полушария (Бразильская, Африканская, Индийская и Австралийская) составляли единый гигантский материк — Гондвану.
Сравнительное изучение геологических структур с разной историей позволило установить, что развитие нашей планеты имело определенную периодичность. Длительные циклы преобладавшего погружения, сопровождавшиеся накоплением осадков, сменялись более кратковременными периодами поднятий, складкообразования и размыва. Обнаружены циклы разных порядков.
Наиболее крупными за последние 500–600 млн лет геологической истории являются каледонский, герцинский и альпийский геотектонические этапы. Длительность каждого из них оценивают приблизительно в 180 млн лет.
Следует особо подчеркнуть, что геотектонические этапы не совпадают с эрами, выделенными на основании изучения истории органической жизни планеты.
После окончания очередного геотектонического этапа, часто завершавшегося горообразованием, одни геосинклинальные зоны вновь вовлекались в прогибание, другие же длительное время оставались как бы законсервированными — становились платформами. Такие зоны получили название по времени последнего этапа прогибания. Геосинклинальные зоны, прекратившие прогибаться и смятые в складки к концу каждого этапа, стали называться, соответственно, каледонидами, герцинидами и альпидами.
Вообще-то, геотектоническая стадия развития Земли до некоторой степени продолжается и сейчас, что подтверждается различными типами тектонических движений на континентах. Однако, по-видимому, с палеозойской эры, то есть примерно 0,5–0,3 млрд лет назад, Земля вступила в новую стадию эволюции, которую можно именовать океанической. Важнейшей особенностью этой стадии жизни нашей планеты является уничтожение мощной континентальной коры и превращение ее в тонкую (5–7 км) океаническую.
Главной особенностью процесса океанообразования является то, что, начавшись, вероятно, в пределах относительно узкой, может быть, линейной зоны, он затем постепенно расширялся, захватив к настоящему времени пространство, превышающее площадь материков.
Каковы условия, определившие начало процесса океанообразования, остается пока неясным. Несомненно лишь одно: в основе этих процессов лежит разогревание Земли в результате радиоактивного распада.
Обширные глубоководные океанические равнины когда— то были платформами. Поэтому геологи называют их талассократонами (опустившимися платформами). О сходстве океанических равнин с платформами материков свидетельствуют их огромные размеры и отсутствие в них каких-либо активных тектонических движений, например сейсмической деятельности.
Протяженные полосы мелководий и островов в океанах (таких как, например, подводный Гавайский хребет) — это, возможно, некогда существовавший геосинклинальный пояс. Не случайно именно к этим зонам относится большинство случаев нахождения в океанах кислых пород (гранитов).
Океаническую стадию следует рассматривать как завершение гигантского мегацикла в истории Земли, длившегося 4–5 млрд лет. Вода, наконец, была «выжата» на поверхность. Может быть, впервые за всю жизнь земной коры слагающие ее химические элементы расположились в закономерной последовательности: вверху самые легкие, ниже тяжелые и плотные — вода, под ней кремнезем, еще ниже алюмосиликаты и внизу силикаты с высоким содержанием магния и железа. Теперь мы можем посмотреть на геологическую историю Земли в целом.
А что дальше? В дальнейшей геологической эволюции нашей планеты, по-видимому, будет продолжаться рост океанов за счет континентов. Материки со временем будут почти полностью поглощены Мировым океаном. Нам, правда, слишком пугаться не стоит. Процесс заливания континентов океанами идет крайне медленно даже по меркам геологического летосчисления, и для полного уничтожения суши потребуются еще сотни миллионов лет.
Самый большой водопад на планете находится под водой. В Датском проливе, между Исландией и Гренландией, на протяжении 200 км каждую секунду с высоты в несколько километров в Атлантику сбрасывается 5 млн м3 воды. Холодная, и поэтому плотная и тяжелая, вода Северного Ледовитого океана падает в теплой воде Атлантического океана как в воздушной среде. Для сравнения: самый полноводный «наземный» водопад — Гуаира в Бразилии — сбрасывает «всего» 13 тыс. м3 воды в секунду.
Небесные камни
Иногда космические тела падают на Землю. Чаще всего они бывают достаточно малыми, чтобы не приносить значимых последствий для обычного устройства земных дел. Но они бывают и такого размера, что под угрозой оказывается само существование жизни на Земле. Последствия в таком случае имеют планетарный (или планетарно значимый) масштаб и всегда оказываются потрясением, испытанием для всего живого. Они всегда катастрофичны! Некоторое представление о древних космических катастрофах дает обследование наиболее крупных метеоритных кратеров, сохранившихся до наших дней.