Когда начиная с конца XIX века логика была математизирована, математика логизирована, а понятие об алгоритмической процедуре стало приобретать четкий смысл, возник вопрос о заполнении этих пробелов. В числе 23 наиболее актуальных математических проблем, провозглашенных Гильбертом на Втором Международном конгрессе математиков, оказалась следующая, шестая по номеру, проблема: «Математическое изложение аксиом физики». Если бы ее удалось решить, то можно было бы, наконец, сказать, что «алгоритм познания Вселенной» находится в наших руках.
Однако появление квантовой теории подорвало надежды на такой исход. Сформировался взгляд, что действительность состоит как бы из двух слоев, один из которых (функция состояния физической системы, или волновая функция) характеризуется определенностью развития на каждом этапе, но не доступен прямому наблюдению, а второй вмещает в себя наблюдаемые величины (координаты, скорости, энергию и т.д.), но не детерминируется однозначным образом. Эта «двуслойность» физической реальности, открытая новой физикой, означает, что статистичность — неустранимый атрибут мира: строгого алгоритма, описывающего наблюдаемые явления, не может существовать даже в принципе. В ней, этой «двуслойности», тоже одна из причин, заставляющих современных ученых искать «новые логики»: «вероятностную логику», «логику квантовой механики» и т. п.
Но вероятностно-статистический характер физических процессов — не единственный сюрприз, преподнесенный квантовой теорией. В ее рамках возникает небывалая «завязанность» всех процессов и событий физической реальности. Строго говоря, квантовая физика не имеет права говорить о волновых функциях отдельных систем, а может рассматривать лишь «волновую функцию мира». Например, для того, чтобы развить квантовую электродинамику, охватывающую теорию элементарных частиц, необходимо учитывать процессы, происходящие в галактиках. Это в новом свете рисует феномен приблизительной верности — объективной, но вместе с тем относительной истинности — естественнонаучных утверждений о событиях физического мира и еще раз подчеркивает важное место, которое в процессе познания занимают «внелогические» элементы мышления ученых: интуиция, догадка, вдохновение. Какая многогранная картина «неалгоритмичности» бытия и познания возникает в результате всего этого перед нами!
Каково же тогда значение логико-алгоритмических методов, которым посвящена эта книга? Диалектика реального мира и мышления такова, что движущийся, развивающийся, «завязанный», «неалгоритмический» мир мы познаем в значительной мере, используя средства логики и аппарат эффективной вычислимости. И там, где эти средства и аппарат оказываются применимыми, все возрастающую роль играют кибернетические «усилители интеллекта».
Очерченные выше аспекты осмысления мира и науки выходят за рамки данной книги. Впрочем, мы не затронули и многие интересные проблемы, достаточно близкие к рассмотренным в ней вопросам.
В стороне остался не только вероятностно-статистический аспект кибернетики, «неопределенностный» срез отображения действительности в научном познании и специфически-человеческая (относящаяся к психологии) составляющая логических исследований, но и такие тесно связанные с классической математической логикой и хорошо развитые разделы теоретической кибернетики, как теория автоматов или приложения логики в технике. Неосвещенными остались глубокая внутренняя связь конструктивного направления в математике и логике с вычислительно-кибернетическим кругом идей и задач[*], а также параллели между результатами некоторых психологических работ и положениями конструктивной математики[**]. Мы ничего не сказали об отечественной школе кибернетики как комплексного направления научного поиска и новейших решений в сфере техники — школе, которую возглавляет председатель Научного совета по кибернетике Академии наук СССР академик Аксель Иванович Берг, о замечательных кибернетических идеях и исследованиях покойных Алексея Андреевича Ляпунова и Михаила Львовича Цетлина, о разнообразных направлениях кибернетики, в которых работают ныне здравствующие советские ученые. Не коснулись мы и многих философско-методологических вопросов, возникших перед исследователями в результате появления кибернетики. Рассказ об этих вопросах может явиться темой не одной книги.
* * *
Создатели этой книги благодарны всем тем, кто оказал им помощь — критикой и советами — при окончательной отработке ее содержания. Они выражают особую признательность Д.П.Горскому Б. А. Кушнеру и Г. И. Сыркину, чьи рекомендации особенно содействовали улучшению текста.
Оба автора совместно работали над рукописью и несут за книгу солидарную ответственность. Правда, имеется одно исключение: первую часть названия книги — «Жар холодных числ» (из стихотворения А. Блока «Скифы») предложил В. Н. Тростников, а Б. В. Бирюков добавил вторую —«и пафос бесстрастной логики» (уже не из Блока...).
Борис Владимирович БИРЮКОВ, Виктор Николаевич ТРОСТНИКОВ
ЖАР ХОЛОДНЫХ ЧИСЛ И ПАФОС БЕССТРАСТНОЙ ЛОГИКИ
Редактор С. Столпник. Художник Р. Варшамов. Худож. редактор М. Гусева. Техн. редактор А. Красавина. Корректор Н. Мелешкина.
Цена 35 коп.
notes
Примечания
*
* Э. Николау. Введение в кибернетику. С добавлениями автора русскому изданию. Перев. с румынского. М., 1967, с. 11.
**
* Материалы XXV съезда КПСС. М., 1976, с. 170.
**
** Там же, с. 214.
1
1. Платон. Сочинения. В 3-х т., т. 1. М., 1968; т. 2. М., 1970;
т 3, ч. 1. М., 1971; т. 3, ч. 2. М., 1972. «Апология Сократа», о которой пойдет речь ниже, помещена в т. 1.
5
2. Платон. Сочинения, т. 1, с. 83—84.
6
3. Гиппократа, персонажа этого диалога Платона, не следует смешивать с его современником — знаменитым древнегреческим врачом Гиппократом Косским (прибл. 460—377 гг. до н. э.).
7
4. Платон. Сочинения, т. 1, с. 191—193.
8
5. См. А. Ф. Лосев. Комментарии.— В кн.: Платон. Сочинения, т. 2. с. 590.
9
6. Платон. Сочинения, т. 2, с. 404—405.
10
7. На эти слова Канта очень часто ссылаются, но очень редко их цитируют. Вот что дословно говорит Кант: «так как во всяком учения о природе имеется науки в собственном смысле лишь столько, сколько имеется в ней априорного познания, то учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в нем математика» (И. Кант. Сочинения. В 6-ти т., т. 6. М., 1966, с. 59). Таким образом, кантовский тезис о «математичности» как мере научности был связан с общей априористской концепцией Канта.
11
8. Платон. Сочинения, т. 2, с. 416.
12
9. В переводе с греческого «органон» означает орудие (метод) исследования; под этим названием комментаторы Аристотеля объединили пять его сочинений по логике и методам научного познания: «Категории» (русск. перев. 1939 г.) «Об истолковании» (русск. дерев. 1891 г.), «Аналитики первая и вторая» (русск. перев. 1952 г.), «Топика» и «Опровержение софистических аргументов».